Skip to main content

Advertisement

Log in

The Usefulness of Non-Toxic Plant Metabolites in the Control of Bacterial Proliferation

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

The effect of generally recognised as safe (GRAS) plant metabolites in regulating the growth of human pathogenic and probiotic bacteria and in the formation of biofilm was investigated. Thymol, carvacrol and eugenol showed the strongest antibacterial action against both pathogenic and probiotic microorganisms, at a subinhibitory concentration (SIC) of ≤50 μg ml−1. Genistein, hydroquinone, p-hydroxybenzoic acid and resveratrol also showed antibacterial effects but at a wide concentration range (SIC = 50–1000 μg ml−1). Catechin, gallic acid, protocatechuic acid and cranberry extracts were the most biologically compatible molecules (SIC ≥ 1000 μg ml−1). Regarding the effect on biofilm, it was observed that thymol, carvacrol and eugenol showed antibiofilm activity against all potential pathogenic bacteria tested whilst specifically enhancing probiotic aggregation. Catechin, genistein and cranberry extracts did not inhibit the pathogenic aggregation but they stimulated probiotic biofilm formation, whilst gallic acid, protocateuchic acid, hydroquinone, p-hydroxybenzoic acid and resveratrol did not show opposite effect on biofilm formation between pathogenic and probiotic microorganisms. These results indicate that an appropriate combination of GRAS plant metabolites, which have traditionally been used as dietary constituents due to their health-promoting characteristics, can also be extremely useful in the regulation of bacterial proliferation in the intestinal microbiota. Hence, it is suggested to apply these natural GRAS molecules as dietary supplements in the food industry in order to promote probiotic viability and to prevent or reduce colonisation or proliferation of intestinal pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Van Houdt R, Michiels CW (2010) Biofilm formation and the food industry, a focus on the bacterial outer surface. J Appl Microbiol 109:1117–1131. doi:10.1111/j.1365-2672.2010.04756.x

    Article  CAS  Google Scholar 

  2. Otto M (2013) Staphylococcal infections: mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. Ann Rev Med 64:175–188. doi:10.1146/annurev-med-042711-140023

    Article  CAS  Google Scholar 

  3. Otto M (2006) Bacterial evasion of antimicrobial peptides by biofilm formation. In: Shafer WM (ed) Antimicrobial peptides and human disease. Springer, Berlin Heidelberg, pp 251–258

    Chapter  Google Scholar 

  4. Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Ag 35:322–332. doi:10.1016/j.ijantimicag.2009.12.011

    Article  Google Scholar 

  5. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322. doi:10.1126/science.284.5418.1318

    Article  CAS  Google Scholar 

  6. Shi X, Zhu X (2009) Biofilm formation and food safety in food industries. Trends in Food Sci Tech 20:407–413. doi:10.1016/j.tifs.2009.01.054

    Article  CAS  Google Scholar 

  7. Ta CAK, Arnason JT (2015) Mini review of phytochemicals and plant taxa with activity as microbial biofilm and quorum sensing inhibitors, Molecules 21.

  8. Xiong Y, Liu Y (2010) Biological control of microbial attachment: a promising alternative for mitigating membrane biofouling. Appl Microbiol Biotechnol 86:825–837. doi:10.1007/s00253-010-2463-0

    Article  CAS  Google Scholar 

  9. Abdallah M, Benoliel C, Drider D et al (2014) Biofilm formation and persistence on abiotic surfaces in the context of food and medical environments. Arch Microbiol 196:453–472. doi:10.1007/s00203-014-0983-1

    Article  CAS  Google Scholar 

  10. Percival SL, Suleman L, Vuotto C, Donelli G (2015) Healthcare-associated infections, medical devices and biofilms: risk, tolerance and control. J Med Microbiol 64:323–334. doi:10.1099/jmm.0.000032

    Article  Google Scholar 

  11. Bazaka K, Jacob MV, Crawford RJ, Ivanova EP (2012) Efficient surface modification of biomaterial to prevent biofilm formation and the attachment of microorganisms. Appl Microbiol Biotechnol 95:299–311. doi:10.1007/s00253-012-4144-7

    Article  CAS  Google Scholar 

  12. Dunne C, O’Mahony L, Murphy L, Thornton G, Morrissey D, O’Halloran S, Feeney M et al (2001) In vitro selection criteria for probiotic bacteria of human origin: correlation with in vivo findings. Am J Clin Nutr 73:386s–392s

    CAS  Google Scholar 

  13. Macfarlane S (2008) Microbial biofilm communities in the gastrointestinal tract. J Clin Gastroenterol 42:S142–S143. doi:10.1097/MCG.0b013e31816207df

    Article  Google Scholar 

  14. Van Tassell ML, Miller MJ (2011) Lactobacillus adhesion to mucus. Nutrients 3:613–636. doi:10.3390/nu3050613

    Article  CAS  Google Scholar 

  15. Monteagudo-Mera A, Rodríguez-Aparicio LB, Rúa J, Martínez-Blanco H, Navasa N, García-Armesto MR, Ferrero MA (2012) In vitro evaluation of physiological probiotic properties of different lactic acid bacteria strains of dairy and human origin. J Funct Foods 4:531–541. doi:10.1016/j.jff.2012.02.014

    Article  CAS  Google Scholar 

  16. Gutiérrez S, Martínez-Blanco H, Rodríguez-Aparicio LB, Ferrero MA (2016) Effect of fermented broth from lactic acid bacteria on pathogenic bacteria proliferation. J Dairy Sci 99:2654–2665

    Article  Google Scholar 

  17. FAO/WHO (2002) Report on Joint FAO/WHO Working Group on Drafting Guidelines for the evaluation of probiotics in foods

  18. Kelly D, Begbie R, King TP (1994) Nutritional influences on interactions between bacteria and the small intestinal mucosa. Nutr Res Rev 7:233–257. doi:10.1079/NRR19940013

    Article  CAS  Google Scholar 

  19. Green AE, Rowlands RS, Cooper RA, Maddocks SE (2012) The effect of the flavonol morin on adhesion and aggregation of Streptococcus pyogenes. FEMS Microbiol Lett 333:54–58. doi:10.1111/j.1574-6968.2012.02598.x

    Article  CAS  Google Scholar 

  20. Gyawali R, Ibrahim SA (2012) Impact of plant derivatives on the growth of foodborne pathogens and the functionality of probiotics. Appl Microbiol Biotechnol 95:29–45. doi:10.1007/s00253-012-4117-x

    Article  CAS  Google Scholar 

  21. Puupponen-Pimiä R, Nohynek L, Hartmann-Schmidlin S, Kähkönen M, Heinonen M, Määttä-Riihinen K, Oksman-Caldentey K-M (2005) Berry phenolics selectively inhibit the growth of intestinal pathogens. J Appl Microbiol 98:991–1000. doi:10.1111/j.1365-2672.2005.02547.x

    Article  Google Scholar 

  22. Parkar SG, Stevenson DE, Skinner MA (2008) The potential influence of fruit polyphenols on colonic microflora and human gut health. Int J Food Microbiol 124:295–298. doi:10.1016/j.ijfoodmicro.2008.03.017

    Article  CAS  Google Scholar 

  23. Guay DRP (2009) Cranberry and urinary tract infections. Drugs 69:775–807. doi:10.2165/00003495-200969070-00002

    Article  CAS  Google Scholar 

  24. Rossi R, Porta S, Canovi B (2010) Overview on cranberry and urinary tract infections in females. J Clini Gastroenterol 44:S61–S62. doi:10.1097/MCG.0b013e3181d2dc8e

    Article  CAS  Google Scholar 

  25. Rafsanjany N, Lechtenberg M, Petereit F, Hensel A (2013) Antiadhesion as a functional concept for protection against uropathogenic Escherichia coli: in vitro studies with traditionally used plants with antiadhesive activity against uropathognic Escherichia coli. J Ethnopharmacol 145:591–597. doi:10.1016/j.jep.2012.11.035

    Article  Google Scholar 

  26. Venkitanarayanan K, Kollanoor-Johny A, Darre MJ et al (2013) Use of plant-derived antimicrobials for improving the safety of poultry products. Poult Sci 92:493–501. doi:10.3382/ps.2012-02764

    Article  CAS  Google Scholar 

  27. Duda-Chodak A, Tarko T, Statek M (2008) The effect of antioxidants on Lactobacillus casei cultures. Acta Sci Pol Technol Aliment 7:39–51 http://core.kmi.open.ac.uk/display/792397

    CAS  Google Scholar 

  28. Morán A, Gutiérrez S, Martínez-Blanco H et al (2014) Non-toxic plant metabolites regulate staphylococcus viability and biofilm formation: a natural therapeutic strategy useful in the treatment and prevention of skin infections. Biofouling 30:1175–1182. doi:10.1080/08927014.2014.976207

    Article  Google Scholar 

  29. Monteagudo-Mera A, Caro I, Rodríguez-Aparicio LB, Rúa J, Ferrero MA, García-Armesto MR (2011) Characterization of certain bacterial strains for potential use as starter or probiotic cultures in dairy products. J Food Protect 74:1379–1386. doi:10.4315/0362-028X.JFP-10-392

    Article  CAS  Google Scholar 

  30. Guo M, Jin TZ, Scullen OJ, Sommers CH (2013) Effects of antimicrobial coatings and cryogenic freezing on survival and growth of Listeria innocua on frozen ready-to-eat shrimp during thawing. J Food Sci 78:M1195–M1200. doi:10.1111/1750-3841.12180

    Article  CAS  Google Scholar 

  31. McLauchlin J (1987) Listeria monocytogenes, recent advances in the taxonomy and epidemiology of listeriosis in humans. J Appl Bacteriol 63:1–11

    Article  CAS  Google Scholar 

  32. Mosqueda-Melgar J, Elez-Martínez P, Raybaudi-Massilia RM, Martín-Belloso O (2008) Effects of pulsed electric fields on pathogenic microorganisms of major concern in fluid foods: a review. Crit Rev Food Sci Nutr 48:747–759. doi:10.1080/10408390701691000

    Article  Google Scholar 

  33. Navasa N, Rodríguez-Aparicio L, Martínez-Blanco H et al (2009) Temperature has reciprocal effects on colanic acid and polysialic acid biosynthesis in E. coli K92. Appl Microbiol Biotechnol 82:721–729. doi:10.1007/s00253-008-1840-4

    Article  CAS  Google Scholar 

  34. Lindbäck T, Granum PE (2013) Bacillus cereus. In: Guide to foodborne pathogens. John Wïley and Sons, Inc. Wiley Blackwell, UK, pp 75–81

    Chapter  Google Scholar 

  35. Branen AL, Keenan TW (1972) Biosynthesis of α-acetolactate and its conversion to diacetyl and acetoin in cell-free extracts of Lactobacillus casei. Can J Microbiol 18:479–485. doi:10.1139/m72-074

    Article  CAS  Google Scholar 

  36. Gorbach SL, Goldin BR (1989) Lactobacillus strains and methods of selection. Patent number publication US4839281A

  37. Gorbach SL, Goldin BR (1991) L. acidophilus strains. Patent number publication US5032399A

  38. Isolauri E, Rautanen T, Juntunen M et al (1991) A human Lactobacillus strain (Lactobacillus casei sp. strain GG) promotes recovery from acute diarrhea in children. Pediatrics 88:90–97

    CAS  Google Scholar 

  39. Botelho MA, Nogueira NAP, Bastos GM et al (2007) Antimicrobial activity of the essential oil from Lippia sidoides, carvacrol and thymol against oral pathogens. Braz J Med Biol Res 40:349–356. doi:10.1590/S0100-879X2007000300010

    Article  CAS  Google Scholar 

  40. Lebert I, Leroy S, Talon R (2007) Effect of industrial and natural biocides on spoilage, pathogenic and technological strains grown in biofilm. Food Microbiol 24:281–287. doi:10.1016/j.fm.2006.04.011

    Article  CAS  Google Scholar 

  41. Qiu J, Wang D, Xiang H et al (2010) Subinhibitory concentrations of thymol reduce enterotoxins a and B and alpha-hemolysin production in Staphylococcus aureus isolates. PLoS One 5:e9736. doi:10.1371/journal.pone.0009736

    Article  Google Scholar 

  42. El Abed Soumya IKS (2011) Carvacrol and thymol components inhibiting Pseudomonas aeruginosa adherence and biofilm formation. Afr J Microbiol Res 5

  43. Upadhyay A, Upadhyaya I, Kollanoor-Johny A, Venkitanarayanan K (2013) Antibiofilm effect of plant derived antimicrobials on Listeria monocytogenes. Food Microbiol 36:79–89. doi:10.1016/j.fm.2013.04.010

    Article  CAS  Google Scholar 

  44. Ultee A, Kets EPW, Smid EJ (1999) Mechanisms of action of carvacrol on the food-borne pathogen Bacillus cereus. Appl Environ Microbiol 65:4606–4610

    CAS  Google Scholar 

  45. Ben Arfa A, Combes S, Preziosi-Belloy L et al (2006) Antimicrobial activity of carvacrol related to its chemical structure. Lett Appl Microbiol 43:149–154. doi:10.1111/j.1472-765X.2006.01938.x

    Article  CAS  Google Scholar 

  46. Ali S, Khan A, Ahmed I et al (2005) Antimicrobial activities of eugenol and Cinnamaldehyde against the human gastric pathogen Helicobacter pylori. Ann Clin Microbiol Antimicrob 4:20. doi:10.1186/1476-0711-4-20

    Article  Google Scholar 

  47. Si W, Gong J, Tsao R et al (2006) Antimicrobial activity of essential oils and structurally related synthetic food additives towards selected pathogenic and beneficial gut bacteria. J Appl Microbiol 100:296–305. doi:10.1111/j.1365-2672.2005.02789.x

    Article  CAS  Google Scholar 

  48. Behrad S, Yusof MY, Goh KL, Baba AS (2009) Manipulation of probiotics fermentation of yogurt by cinnamon and licorice: effects on yogurt formation and inhibition of Helicobacter pylori growth in vitro. WASET 3:12–29

    Google Scholar 

  49. Kamatou GP, Vermaak I, Viljoen AM (2012) Eugenol—from the remote Maluku Islands to the international market place: a review of a remarkable and versatile molecule. Molecules 17:6953–6981. doi:10.3390/molecules17066953

    Article  CAS  Google Scholar 

  50. Magesh H, Kumar A, Alam A et al (2013) Identification of natural compounds which inhibit biofilm formation in clinical isolates of Klebsiella pneumoniae. Indian J Exp Biol 51:764–772

    CAS  Google Scholar 

  51. Zhou L, Zheng H, Tang Y et al (2013) Eugenol inhibits quorum sensing at sub-inhibitory concentrations. Biotechnol Lett 35:631–637. doi:10.1007/s10529-012-1126-x

    Article  CAS  Google Scholar 

  52. Toda M, Okubo S, Ikigai H et al (1991) The protective activity of tea catechins against experimental infection by Vibrio cholerae O1. Microbiol Immunol 36:999–1001

    Article  Google Scholar 

  53. Ooshima T, Minami T, Aono W et al (1993) Oolong tea polyphenols inhibit experimental dental caries in SPF rats infected with mutatis streptococci. Caries Res 27:124–129. doi:10.1159/000261529

    Article  CAS  Google Scholar 

  54. Vijaya K, Ananthan S, Nalini R (1995) Antibacterial effect of theaflavin, polyphenon 60 (Camellia sinensis) and Euphorbia hirta on Shigella spp.—a cell culture study. J Ethnopharmacol 49:115–118. doi:10.1016/0378-8741(95)90039-X

    Article  CAS  Google Scholar 

  55. Shimamura T, Zhao W-H, Hu Z-Q (2007) Mechanism of action and potential for use of tea catechin as an antiinfective agent. Anti-Infect Agents Med Chem Former Curr Med Chem - Anti-Infect Agents 6:57–62. doi:10.2174/187152107779314124

    CAS  Google Scholar 

  56. Matsunaga T, Nakahara A, Minnatul KM et al (2010) The inhibitory effects of catechins on biofilm formation by the periodontopathogenic bacterium, Eikenella corrodens. Biosci Biotechnol Biochem 74:2445–2450

    Article  CAS  Google Scholar 

  57. Vandeputte OM, Kiendrebeogo M, Rajaonson S et al (2010) Identification of catechin as one of the flavonoids from Combretum albiflorum bark extract that reduces the production of quorum-sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 76:243–253. doi:10.1128/AEM.01059-09

    Article  CAS  Google Scholar 

  58. Mankovskaia A, Lévesque CM, Prakki A (2013) Catechin-incorporated dental copolymers inhibit growth of Streptococcus mutans. J Appl Oral Sci 21:203–207. doi:10.1590/1678-7757201302430

    Article  CAS  Google Scholar 

  59. Hong H, Landauer MR, Foriska MA, Ledney GD (2006) Antibacterial activity of the soy isoflavone genistein. J Basic Microbiol 46:329–335. doi:10.1002/jobm.200510073

    Article  CAS  Google Scholar 

  60. Rauha J-P, Remes S, Heinonen M et al (2000) Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. Int J Food Microbiol 56:3–12. doi:10.1016/S0168-1605(00)00218-X

    Article  CAS  Google Scholar 

  61. Alberto MR, Farías ME, Manca De Nadra MC (2001) Effect of gallic acid and catechin on Lactobacillus hilgardii 5w growth and metabolism of organic compounds. J Agric Food Chem 49:4359–4363

    Article  CAS  Google Scholar 

  62. Kim S, Ruengwilysup C, Fung DYC (2004) Antibacterial effect of water-soluble tea extracts on foodborne pathogens in laboratory medium and in a food model. J Food Protect 67:2608–2612

    Article  CAS  Google Scholar 

  63. Borges A, Saavedra MJ, Simões M (2012) The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria. Biofouling 28:755–767. doi:10.1080/08927014.2012.706751

    Article  CAS  Google Scholar 

  64. Plyuta V, Zaitseva J, Lobakova E et al (2013) Effect of plant phenolic compounds on biofilm formation by Pseudomonas aeruginosa. APMIS 121:1073–1081. doi:10.1111/apm.12083

    Article  CAS  Google Scholar 

  65. Stojković DS, Živković J, Soković M et al (2013) Antibacterial activity of Veronica montana L. extract and of protocatechuic acid incorporated in a food system. Food Chem Toxicol 55:209–213. doi:10.1016/j.fct.2013.01.005

    Article  Google Scholar 

  66. Fernández MA, García MD, Sáenz MT (1996) Antibacterial activity of the phenolic acids fractions of Scrophularia frutescens and Scrophularia sambucifolia. J Ethnopharmacol 53:11–14. doi:10.1016/0378-8741(96)01419-5

    Article  Google Scholar 

  67. Alberto MR, Gómez-Cordovés C, Manca de Nadra MC Metabolism of gallic acid and catechin by Lactobacillus hilgardii from wine. J Agric Food Chem, 52:6465–6469, 2004.

  68. Dogasaki C, Shindo T, Furuhata K, Fukuyama M (2002) Identification of chemical structure of antibacterial components against Legionella pneumophila in a coffee beverage. Yakugaku Zasshi 122:487–494. doi:10.1248/yakushi.122.487

    Article  CAS  Google Scholar 

  69. Alberto MR, Gómez-Cordovés C, Manca de Nadra MC (2004) Metabolism of gallic acid and catechin by Lactobacillus hilgardii from wine. J Agric Food Chem 52:6465–6469. doi:10.1021/jf049239f

    Article  CAS  Google Scholar 

  70. Drea WF (1944) Antibacterial effects of various organic substances upon the H37 strain of human tubercle bacilli in a simple synthetic medium. J Bacteriol 48:547–553

    CAS  Google Scholar 

  71. Himejima M, Nihei K, Kubo I (2004) Hydroquinone, a control agent of agglutination and adherence of Streptococcus mutans induced by sucrose. Bioorg Med Chem 12:921–925. doi:10.1016/j.bmc.2003.12.020

    Article  CAS  Google Scholar 

  72. Sobota A (1984) Inhibition of bacterial adherence by cranberry juice: potential use for the treatment of urinary tract infections. J Urol 131:1013–1016

    Article  CAS  Google Scholar 

  73. Schmidt DR, Sobota AE (1987) An examination of the anti-adherence activity of cranberry juice on urinary and non-urinary bacterial isolates. Microbios 55:173–181

    Google Scholar 

  74. Howell AB, Vorsa N, Marderosian AD, Foo LY (1998) Inhibition of the adherence of P-fimbriated Escherichia coli to uroepithelial-cell surfaces by proanthocyanidin extracts from cranberries. N E J Med 339:1085–1086. doi:10.1056/NEJM199810083391516

    Article  CAS  Google Scholar 

  75. LaPlante KL, Sarkisian SA, Woodmansee S et al (2012) Effects of cranberry extracts on growth and biofilm production of Escherichia coli and Staphylococcus species. Phytother Res 26:1371–1374. doi:10.1002/ptr.4592

    Article  CAS  Google Scholar 

  76. Sánchez-Patán F, Tabasco R, Monagas M et al (2012) Capability of Lactobacillus plantarum IFPL935 to catabolize flavan-3-ol compounds and complex phenolic extracts. J Agric Food Chem 60:7142–7151. doi:10.1021/jf3006867

    Article  Google Scholar 

  77. Chong KP, Rossall S, Atong M (2009) In vitro antimicrobial activity and fungitoxicity of syringic acid, caffeic acid and 4-hydroxybenzoic acid against Ganoderma boninense. J Agric Sci 1:P15. doi:10.5539/jas.v1n2P15

    Google Scholar 

  78. Paulo L, Ferreira S, Gallardo E et al (2010) Antimicrobial activity and effects of resveratrol on human pathogenic bacteria. World J Microbiol Biotechnol 26:1533–1538. doi:10.1007/s11274-010-0325-7

    Article  CAS  Google Scholar 

  79. Coenye T, Brackman G, Rigole P et al (2012) Eradication of Propionibacterium acnes biofilms by plant extracts and putative identification of icariin, resveratrol and salidroside as active compounds. Phytomedicine 19:409–412. doi:10.1016/j.phymed.2011.10.005

    Article  CAS  Google Scholar 

  80. Cho HS, Lee J-H, Ryu SY et al (2013) Inhibition of Pseudomonas aeruginosa and Escherichia coli O157:H7 biofilm formation by plant metabolite ε-viniferin. J Agric Food Chem 61:7120–7126. doi:10.1021/jf4009313

    Article  CAS  Google Scholar 

  81. Lee J-H, Cho HS, Joo SW et al (2013) Diverse plant extracts and trans-resveratrol inhibit biofilm formation and swarming of Escherichia coli O157:H7. Biofouling 29:1189–1203. doi:10.1080/08927014.2013.832223

    Article  CAS  Google Scholar 

  82. National Committee for Clinical Laboratory Standards (2003) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved Standard, 6th edition. M7–A6. NCCLS, Wayne PA

  83. Kubota H, Senda S, Nomura N, Tokuda H, Uchiyama H (2008) Biofilm formation by lactic acid bacteria and resistance to environmental stress. J Biosci Bioeng 106:381–386. doi:10.1263/jbb.106.381

    Article  CAS  Google Scholar 

  84. Wollenweber E (1988) Occurrence of flavonoid aglycones in medicinal plants. Prog Clin Biol Res 280:45–55

    CAS  Google Scholar 

  85. Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–582

    CAS  Google Scholar 

  86. Clifford MN (2004) Diet-derived phenols in plasma and tissues and their implications for health. Planta Med 70:1103–1114. doi:10.1055/s-2004-835835

    Article  CAS  Google Scholar 

  87. Gadang VP, Hettiarachchy NS, Johnson MG, Owens C (2008) Evaluation of antibacterial activity of whey protein isolate coating incorporated with nisin, grape seed extract, malic acid, and EDTA on a Turkey frankfurter system. J Food Sci 73:M389–M394. doi:10.1111/j.1750-3841.2008.00899.x

    Article  CAS  Google Scholar 

  88. Perumalla AVS, Hettiarachchy NS (2011) Green tea and grape seed extracts—potential applications in food safety and quality. Food Res Int 44:827–839. doi:10.1016/j.foodres.2011.01.022

    Article  CAS  Google Scholar 

  89. Ávila M, Hidalgo M, Sánchez-Moreno C, Pelaez C, Requena T, de Pascual-Teresa S (2009) Bioconversion of anthocyanin glycosides by bifidobacteria and Lactobacillus. Food Res Int 42:1453–1461. doi:10.1016/j.foodres.2009.07.026

    Article  Google Scholar 

  90. Tabasco R, Sánchez-Patán F, Monagas M, Bartolomé B, Moreno-Arribas MV, Peláez C, Requena T (2011) Effect of grape polyphenols on lactic acid bacteria and bifidobacteria growth: resistance and metabolism. Food Microbiol 28:1345–1352. doi:10.1016/j.fm.2011.06.005

    Article  CAS  Google Scholar 

  91. Rolfe RD (2000) The role of probiotic cultures in the control of gastrointestinal health. J Nutr 130:396S–402S

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the Dirección General de Investigación (SAF2015-64306-R) and the Junta de Castilla y León (LE283U14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandro B. Rodríguez-Aparicio.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Sergio Gutiérrez and Alfredo Morán contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez, S., Morán, A., Martínez-Blanco, H. et al. The Usefulness of Non-Toxic Plant Metabolites in the Control of Bacterial Proliferation. Probiotics & Antimicro. Prot. 9, 323–333 (2017). https://doi.org/10.1007/s12602-017-9259-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-017-9259-9

Keywords

Navigation