Skip to main content

Advertisement

Log in

Critical review on agrowaste cellulose applications for biopolymers

  • Review Article
  • Published:
International Journal of Plastics Technology

Abstract

The usage and application of agricultural biomass products in development of polymer nanocomposites is increasing due to the demand for green materials, depletion of natural resources and awareness of environmental issues. Lignocellulosic agricultural fibers such as sugarcane bagasse, rice husk, sorghum waste and maize stalk are increasingly investigated as an alternative to conventional and inorganic fillers such as carbon fiber, glass fiber and silica. This review provides an overview on the emerging cellulose nanomaterials, focusing on extraction procedures from lignocellulosic biomass, and on modification developments and applications of these materials in polymer matrices. In this regard, cellulose nanocrystals, cellulose nanofibrils and bacterial nanocellulose derived from biomass cellulose, the most abundant biopolymer, are increasingly applied to nanocomposites. Different range of biodegradable polymer matrices are described in this review (polylactide, polycaprolactone, and polyhydroxybutyrate) because of more eco-friendliness from their origin in contrast to the fully petroleum polymers in production of biopolymers nanocomposites. This family of composites offer a green alternative to synthetic polymers and represents the best polymeric substitutes for various (petro) polymers because of their renewability, biodegradability, biocompatibility and good thermomechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Raquez JM, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38:1504–1542

    CAS  Google Scholar 

  2. Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng 28:1–63

    Google Scholar 

  3. Petersson L, Oksman K (2006) Biopolymer based nanocomposites: comparing layered silicates and microcrystalline cellulose as nanoreinforcements. Compos Sci Technol 66:2187–2196

    CAS  Google Scholar 

  4. Ceraulo M, Morreale M, Botta L, Mistretta MC, Scaffaro R (2015) Prediction of the morphology of polymer-clay nanocomposites. Polym Test 4:149–156

    Google Scholar 

  5. Dintcheva NT, Al-Malaika S, Morici E (2015) Novel organo-modifier for thermally-stable polymer-layered silicate nanocomposites. Polym Degrad Stab 122:88–101

    CAS  Google Scholar 

  6. Shah KJ, Shukla AD, Shah DO, Imae T (2016) Effect of organic modifiers on dispersion of organoclay in polymer nanocomposites to improve mechanical properties. Polym 97:525–532

    CAS  Google Scholar 

  7. Goyal S, Goyal GK (2012) Nanotechnology in food packaging—a critical review. Russ J Agric Soc-Econ Sci 10:14–24

    Google Scholar 

  8. Zare Y (2016) Study of nanoparticles aggregation/agglomeration in polymer particulate nanocomposites by mechanical properties. Compos Part A Appl Sci Manuf 84:158–164

    CAS  Google Scholar 

  9. Alshatwi AA, Athinarayanan J, Periasamy VS (2015) Biocompatibility assessment of rice husk-derived biogenic silica nanoparticles for biomedical applications. Mater Sci Eng C 47:8–16

    CAS  Google Scholar 

  10. Rapacz-Kmita A, Stodolak-Zych E, Szaraniec B, Gajek M, Dudek P (2015) Effect of clay mineral on the accelerated hydrolytic degradation of polylactide in the polymer/clay nanocomposites. Mater Lett 146:73–76

    CAS  Google Scholar 

  11. Premalal HGB, Ismail H, Baharin A (2002) Comparison of the mechanical properties of rice husk powder filled polypropylene composites with talc filled polypropylene composites. Polym Test 21:833–839

    CAS  Google Scholar 

  12. Battegazzore D, Salvetti O, Frache A, Peduto N, De Sio A, Marino F (2016) Thermo-mechanical properties enhancement of bio-polyamides (PA10.10 and PA6.10) by using rice husk ash and nanoclay. Compos Part A Appl Sci Manuf 81:193–201

    CAS  Google Scholar 

  13. Chand N, Jhod BD (2008) Mechanical, electrical and thermal properties of maleic anhydride modified rice husk filled PVC composites. Bio Resour 3(4):1228–1243

    Google Scholar 

  14. Chigondo F, Shoko P, Nyamunda BC, Guyo U, Moyo M (2013) Maize stalk as reinforcement in natural rubber composites. Int J Sci Technol Res 2(6):2277–8616

    Google Scholar 

  15. Sujaritjun W, Uawongsuwan P, Pivsa-Art W, Hamada H (2013) Mechanical property of surface modified natural fiber reinforced PLA biocomposites. Energy Proc 34:664–672

    CAS  Google Scholar 

  16. Faruk O, Sain M (2014) Biofiber reinforcement in composites materials. Woodhead Publ Ser 51:454–487

    Google Scholar 

  17. Goriparthi BK, Suman KNS, Rao NM (2012) Effect of fiber surface treatments on mechanical and abrasive wear performance of polylactide/jute composites. Compos Part A Appl Sci Manuf 43:1800–1808

    CAS  Google Scholar 

  18. Wu F, Zhang S, Chen Z, Zhang B, Yang W, Liu Z, Yang M (2016) Interfacial relaxation mechanisms in polymer nanocomposites through the rheological study on polymer/grafted nanoparticles. Polymer 90:264–275

    CAS  Google Scholar 

  19. Threepopnatkul P, Kaerkitcha N, Athipongarporn N (2009) Effect of surface treatment on performance of pineapple leaf fiber-polycarbonate composites. Compos Part B Eng 40:628–632

    Google Scholar 

  20. Nevárez LM, Casarrubias LB, Canto OS, Celzard A, Fierro V, Gómez RI, Sánchez GG (2011) Biopolymers-based nanocomposites: membranes from propionated lignin and cellulose for water purification. Carbohydr Polym 86:732–741

    Google Scholar 

  21. Mulinari DR, da Silva MLCP (2008) Adsorption of sulphate ions by modification of sugarcane bagasse cellulose. Carbohydr Polym 74:617–620

    CAS  Google Scholar 

  22. Hassan SB, Oghenevweta JE, Aigbodion VS (2012) Morphological and mechanical properties of carbonized waste maize stalk as reinforcement for eco-composites. Compos Part B Eng 43:2230–2236

    CAS  Google Scholar 

  23. Zheng Y, Monty J, Linhardt RJ (2015) Polysaccharide-based nanocomposites and their applications. Carbohydr Res 405:23–32

    CAS  PubMed  Google Scholar 

  24. Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci 31:576–602

    CAS  Google Scholar 

  25. Bugnicourt E, Cinelli P, Lazzeri A, Alvarez V (2014) Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Express Polym Lett 8(11):791–808

    Google Scholar 

  26. Pan H (2011) Synthesis of polymers from organic solvent liquefied biomass: a review. Renew Sustain Energy Rev 15:3454–3463

    CAS  Google Scholar 

  27. Goyal HB, Seal D, Saxena RC (2008) Bio-fuels from thermochemical conversion of renewable resources: a review. Renew Sustain Energy Rev 12:504–517

    CAS  Google Scholar 

  28. Kan T, Strezov V, Evans TJ (2016) Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renew Sustain Energy Rev 57:1126–1140

    CAS  Google Scholar 

  29. Vassilev SV, Baxter D, Andersen LK, Vassileva CG (2013) An overview of the composition and application of biomass ash. Part 1. Phase-mineral and chemical composition and classification. Fuel 105:40–76

    CAS  Google Scholar 

  30. Saxena RC, Seal D, Kumar S, Goyal HB (2008) Thermo-chemical routes for hydrogen rich gas from biomass: a review. Renew Sustain Energy Rev 12:1909–1927

    CAS  Google Scholar 

  31. Mazumder J, de Lasa HI (2016) Catalytic steam gasification of biomass surrogates: thermodynamics and effect of operating conditions. Chem Eng J 293:232–242

    CAS  Google Scholar 

  32. Kirubakaran V, Sivaramakrishnan V, Nalini R, Sekar T, Premalatha M, Subramanian P (2009) A review on gasification of biomass. Renew Sustain Energy Rev 13:179–186

    Google Scholar 

  33. Kemper J (2015) Biomass and carbon dioxide capture and storage: a review. Int J Greenhouse Gas Control 40:401–430

    CAS  Google Scholar 

  34. Anca-Couce A (2016) Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis. Prog Energy Combust Sci 53:41–79

    Google Scholar 

  35. McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83:37–46

    CAS  PubMed  Google Scholar 

  36. Johansson AC, Wiinikka H, Sandstrom L, Marklund M, Ohrman OGW, Narvesjo J (2016) Characterization of pyrolys is products produced from different Nordic biomass types in a cyclone pilot plant. Fuel Process Technol 146:9–16

    CAS  Google Scholar 

  37. Tripathi M, Sahu JN, Ganesan P (2016) Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review. Renew Sustain Energy Rev 55:467–481

    CAS  Google Scholar 

  38. Yang HS, Kim HJ, Son J, Park HJ, Lee BJ, Hwang TS (2004) Rice-husk flour filled polypropylene composites; mechanical and morphological study. Compos Struct 63:305–312

    Google Scholar 

  39. Abbasi T, Abbasi SA (2010) Biomass energy and the environmental impacts associated with its production and utilization. Renew Sustain Energy Rev 14:919–937

    CAS  Google Scholar 

  40. Corrales RC, Mendes FMT, Perrone CC, Sant’Anna C, de Souza W, Abud Y, da Silva Bon EP, Ferreira-Leitão V (2012) Structural evaluation of sugar cane bagasse steam pretreated in the presence of CO2 and SO2. Biotechnol Biofuels 2012:5–36

    Google Scholar 

  41. Yang HS, Kim HJ, Park HJ, Lee BJ, Hwang TS (2006) Water absorption behavior and mechanical properties of lignocellulosic filler-polyolefin bio-composites. Compos Struct 72:429–437

    Google Scholar 

  42. Liu CF, Sun RC, Zhang AP, Ren JL, Wang XA, Qin MH, Chao ZN, Luo W (2007) Homogeneous modification of sugarcane bagasse cellulose with succinic anhydride using a ionic liquid as reaction medium. Carbohydr Res 342:919–926

    CAS  PubMed  Google Scholar 

  43. Abdel-Halim ES (2014) Chemical modification of cellulose extracted from sugarcane bagasse: preparation of hydroxyethyl cellulose. Arab J Chem 7:362–371

    CAS  Google Scholar 

  44. Abdelwahab NA, Shukry N (2015) Synthesis, characterization and antimicrobial properties of grafted sugarcane bagasse/silver nanocomposites. Carbohydr Polym 115:276–284

    CAS  PubMed  Google Scholar 

  45. Azwa ZN, Yousif BF, Manalo AC, Karunasena W (2013) A review on the degradability of polymeric composites based on natural fibers. Mater Des 47:424–442

    CAS  Google Scholar 

  46. Mounika M, DrK Ravindrab (2015) Characterization of nanocomposites reinforced with cellulose whiskers: a review. Mater Today Proc 2:3610–3618

    Google Scholar 

  47. Sun JX, Sun XF, Zhao H, Sun RC (2004) Isolation and characterization of cellulose from sugarcane bagasse. Polym Degrad Stab 84:331–339

    CAS  Google Scholar 

  48. Jayapal N, Samanta AK, Kolte AT, Senani S, Sridhar M, Suresh KP, Sampath KT (2013) Value addition to sugarcane bagasse: xylan extraction and its process optimization for xylooligosaccharides production. Ind Crops Prod 42:14–24

    CAS  Google Scholar 

  49. Fernandes EM, Pires RA, Mano JF, Reis RL (2013) Bionanocomposites from lignocellulosic resources: properties, applications and future trends for their use in the biomedical field. Prog Polym Sci 38:1415–1441

    CAS  Google Scholar 

  50. John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71:343–364

    CAS  Google Scholar 

  51. Yunpu W, Leilei D, Liangliang F, Shaoqi S, Yuhuam L, Ruan R (2016) Review of microwave-assisted lignin conversion for renewable fuels and chemicals. J Anal Appl Pyrolysis 119:104–113

    Google Scholar 

  52. Nair V, Panigrahy A, Vinu R (2014) Development of novel chitosan-lignin composites for adsorption of dyes and metal ions from wastewater. Chem Eng J 254:491–502

    CAS  Google Scholar 

  53. Mathews SL, Grunden AM, Pawlak J (2016) Degradation of lignocellulose and lignin Paenibacillus glucanolyticus. Int Biodeterior Biodegrad 110:79–86

    CAS  Google Scholar 

  54. Yang W, Fortunati E, Dominici F, Kenny JM, Puglia D (2015) Effect of processing conditions and lignin content on thermal, mechanical and degradative behavior of lignin nanoparticles/polylactic (acid) bionanocomposites prepared by melt extrusion and solvent casting. Eur Polym J 71:126–139

    CAS  Google Scholar 

  55. Shalwan A, Yousif BF (2013) In State of Art: mechanical and tribological behaviour of polymeric composites based on natural fibres. Mater Des 44:14–24

    Google Scholar 

  56. Youssef AM, El-Gendy A, Kamel S (2015) Evaluation of corn husk fibers reinforced recycled low density polyethylene composites. Mater Chem Phys 152:26–33

    CAS  Google Scholar 

  57. Parida C, Das SC, Dash SK (2012) Mechanical analysis of bio nanocomposite prepared from Luffa cylindrical. Proc Chem 4:53–59

    CAS  Google Scholar 

  58. Yan L, Kasal B, Huang L (2016) A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering. Compos Part B Eng 92:94–132

    CAS  Google Scholar 

  59. Gurunathan T, Mohanty S, Nayak SK (2015) A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos Part A Appl Sci Manuf 77:1–25

    CAS  Google Scholar 

  60. Monteiro SN, Calado V, Rodriguez RJS, Margem FM (2012) Thermogravimetric behaviour of natural fibers reinforced polymer composites—an overview. Mater Sci Eng A 557:17–28

    CAS  Google Scholar 

  61. Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596

    CAS  Google Scholar 

  62. Jawaid M, Abdul-Khalil HPS (2011) Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohydr Polym 86:1–8

    CAS  Google Scholar 

  63. Lee BH, Kim HS, Lee S, Kim HJ, Dorgan JR (2009) Bio-composites of kenaf fibers in polylactide: role of improved interfacial adhesion in the carding process. Compos Sci Technol 69:2573–2579

    CAS  Google Scholar 

  64. Rozman HD, Lee MH, Kumar RN, Abusamah A, Ishak ZAM (2000) The effect of chemical modification of rice husk with glycidyl methacrylate on the mechanical and physical properties of rice husk-polystyrene composites. J Wood Chem Technol 20(1):93–109

    CAS  Google Scholar 

  65. Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169

    CAS  PubMed  Google Scholar 

  66. Lee KY, Bharadia P, Blaker JJ, Bismarck A (2012) Short sisal fibre reinforced bacterial cellulose polylactide nanocomposites using hairy sisal fibres as reinforcement. Compos Part A Appl Sci Manuf 43:2065–2074

    CAS  Google Scholar 

  67. Sawpan MA, Pickering KL, Fernyhough A (2012) Flexural properties of hemp fibre reinforced polylactide and unsaturated polyester composites. Compos Part A Appl Sci Manuf 43:519–526

    CAS  Google Scholar 

  68. Hu RH, Sun MY, Lim JK (2010) Moisture absorption, tensile strength and microstructure evolution of short jute fiber/polylactide composite in hygrothermal environment. Mater Des 31:3167–3173

    CAS  Google Scholar 

  69. Satyanarayana KG, Arizaga GGC, Wypych F (2009) Biodegradable composites based on lignocellulosic fibers—an overview. Prog Polym Sci 34:982–1021

    CAS  Google Scholar 

  70. Szczerbowski D, Pitarelo AP, Filho AZ, Ramos LP (2014) Sugarcane biomass for biorefineries: comparative composition of carbohydrate and non-carbohydrate components of bagasse and straw. Carbohydr Polym 114:95–101

    CAS  PubMed  Google Scholar 

  71. Hemmasi AH, Ghasemi I, Bazyar B, Samariha A (2011) Influence of nanoclay on the physical properties of recycled high-density polyethylene/bagasse nanocomposite. Middle-East J Sci Res 8(3):648–651

    CAS  Google Scholar 

  72. Agunsoye JO, Aigbodion VS (2013) Bagasse filled recycled polyethylene bio-composites: morphological and mechanical properties study. Results Phys 3:187–194

    Google Scholar 

  73. Mandal A, Chakrabarty D (2011) Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr Polym 86:1291–1299

    CAS  Google Scholar 

  74. Banerjee PN (2014) Isolation and characterisation of hemicelluloses extracted by tteam and alkaline peroxide at different temperatures from sugarcane bagasse. Lignocellulose 3(2):145–154

    Google Scholar 

  75. Luz SM, Goncalves AR, Del’Arco AP Jr (2007) Mechanical behavior and microstructural analysis of sugarcane bagasse fibers reinforced polypropylene composites. Compos Part A Appl Sci Manuf 38:1455–1461

    Google Scholar 

  76. Chen JC, Harrison IR (2002) Modification of polyacrylonite (PAN) carbon fiber precursor via post-spinning plasticization and stretching in dimethyl formamide. Carbon 40:25–45

    CAS  Google Scholar 

  77. Gilfillan WN, Nguyen DMT, Sopade PA, Doherty WOS (2012) Preparation and characterisation of composites from starch and sugar cane fibre. Ind Crops Prod 40:45–54

    CAS  Google Scholar 

  78. Kordkheili HY, Hiziroglu S, Farsi M (2012) Some of the physical and mechanical properties of cement composites manufactured from carbon nanotubes and bagasse fiber. Mater Des 33:395–398

    CAS  Google Scholar 

  79. Cerqueira EF, Baptista CARP, Mulinari DR (2011) Mechanical behaviour of polypropylene reinforced sugarcane bagasse fibers composites. Proc Eng 10:2046–2051

    CAS  Google Scholar 

  80. Vilay V, Mariatti M, Taib RM, Todo M (2008) Effect of fiber surface treatment and fiber loading on the properties of bagasse fiber-reinforced unsaturated polyester composites. Compos Sci Technol 68:631–638

    CAS  Google Scholar 

  81. de Sousa MV, Monteiro SN, d’Almeida JRM (2004) Evaluation of pre-treatment, size and molding pressure on flexural mechanical behavior of chopped bagasse-polyester composites. Polym Test 23:253–258

    Google Scholar 

  82. Stael GC, Tavares MIB, d’Almeida JRM (2001) Impact behavior of sugarcane bagasse waste-EVA composites. Polym Test 20:869–872

    CAS  Google Scholar 

  83. Khorami M, Ganjian E (2011) Comparing flexural behaviour of fibre-cement composites reinforced bagasse: wheat and eucalyptus. Constr Build Mater 25:3661–3667

    Google Scholar 

  84. Mulinari DR, Voorwald HJC, Cioffi MOH, da Silva MLCP, da Cruz TG, Saron C (2009) Sugarcane bagasse cellulose/HDPE composites obtained by extrusion. Compos Sci Technol 69:214–219

    CAS  Google Scholar 

  85. Lei Y, Wu Q, Yao F, Xu Y (2007) Preparation and properties of recycled HDPE/natural fiber composites. Compos Part A Appl Sci Manuf 38:1664–1674

    Google Scholar 

  86. Mtibe A, Linganiso LZ, Mathew AP, Oksman K, John MJ, Anandjiwala RD (2015) A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nanofibers. Carbohydr Polym 118:1–8

    CAS  PubMed  Google Scholar 

  87. Carpita NC, McCann MC (2008) Maize and sorghum: genetic resources for bioenergy grasses. Trends Plant Sci 13(8):1360–1385

    Google Scholar 

  88. Saravana BD, Mohan KGC (2012) Morphological and thermal properties of maize fiber composites. Fiber Polym 13(7):887–893

    Google Scholar 

  89. Luo H, Xiong G, Ma C, Chang P, Yao F, Zhu Y, Zhang C, Wan Y (2014) Mechanical and thermo-mechanical behaviors of sizing treated corn fiber/polylactide composites. Polym Test 39:45–52

    CAS  Google Scholar 

  90. Wu J, Zhang X, Wan J, Ma F, Tang Y, Zhang X (2011) Production of fiberboard using corn stalk pretreated with white-rot fungus Trametes hirsute by hot pressing without adhesive. Bioresour Technol 102:11258–11261

    CAS  PubMed  Google Scholar 

  91. Oghenevweta JE, Aigbodion VS, Nyior GB, Asuke F (2014) Mechanical properties and microstructural analysis of Al-Si-Mg/carbonized maize stalk waste particulate composites. J King Saud Univ Eng Sci. https://doi.org/10.1016/j.jksues.2014.03.009

    Article  Google Scholar 

  92. Nourbakhsh A, Ashori A (2010) Wood plastic composites from agro-waste materials: analysis of mechanical properties. Bioresour Technol 101:2525–2528

    CAS  PubMed  Google Scholar 

  93. Panthapulakkal S, Sain M (2007) Agro-residue reinforced high-density polyethylene composites: Fiber characterization and analysis of composite properties. Compos Part A Appl Sci Manuf 38:1445–1454

    Google Scholar 

  94. Ashori A, Nourbakhsh A (2010) Bio-based composites from waste agricultural residues. Waste Manag 30:680–684

    CAS  PubMed  Google Scholar 

  95. Foo KY, Hameed BH (2009) Utilization of rice husk ash as novel adsorbent: a judicious recycling of the colloidal agricultural waste. Adv Colloid Interface Sci 152:39–47

    CAS  PubMed  Google Scholar 

  96. Soltani N, Bahrami A, Pech-Canul MI, Gonzalez LA (2015) Review on the physicochemical treatments of rice husk for production of advanced materials. Chem Eng J 264:899–935

    CAS  Google Scholar 

  97. Fernandes IJ, Calheiro D, Kieling AG, Moraes CAM, Rocha TLAC, Brehm FA, Modolo RCE (2016) Characterization of rice husk ash produced using different biomass combustion techniques for energy. Fuel 165:351–359

    CAS  Google Scholar 

  98. Rosa SML, Rehman N, de Miranda MIG, Nachtigall SMB, Bica CID (2012) Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohydr Polym 87:1131–1138

    CAS  Google Scholar 

  99. Athinarayanan J, Periasamy VS, Alhazmi M, Alatiah KA, Alshatwin AA (2005) Synthesis of biogenic silica nanoparticles from rice husks for biomedical applications. Ceram Int 41:275–281

    Google Scholar 

  100. Pode R (2016) Potential applications of rice husk ash waste from rice husk biomass power plant. Renew Sustain Energy Rev 53:1468–1485

    Google Scholar 

  101. Tolba GMK, Barakat NAM, Bastaweesy AM, Ashour EA, Abdelmoez W, El-Newehy MH, Al-Deyab SS, Kim HK (2015) Effective and highly recyclable nanosilica produced from the rice husk for effective removal of organic dyes. J Ind Eng Chem 29:134–145

    CAS  Google Scholar 

  102. Shukla SK, Nidhi S, Pooja N, Charu A, Silvi MR, Bharadvaja A, Dubey GC (2014) Metal decontamination from chemically modified rice husk film. Adv Mater Lett 5(6):352–355

    Google Scholar 

  103. Adam FA, Appaturi JN, Iqbal A (2012) The utilization of rice husk silica as a catalyst: review and recent progress. Catal Today 190:2–14

    CAS  Google Scholar 

  104. Carmona VB, Oliveir RM, Silva WTL, Mattoso LHC, Marconcini JM (2013) Nanosilica from rice husk: extraction and characterization. Ind Crops Prod 43:291–296

    CAS  Google Scholar 

  105. Prithivirajan R, Jayabal S, Bharathiraja G (2015) Bio-based composites from waste agricultural residues: mechanical and morphological properties. Cellul Chem Technol 49(1):65–68

    CAS  Google Scholar 

  106. Hamid MRY, Ahmad MHAGS (2012) Effect of antioxidants and fire retardants as mineral fillers on the physical and mechanical properties of high loading hybrid biocomposites reinforced with rice husks and sawdust. Ind Crops Prod 40:96–102

    CAS  Google Scholar 

  107. Tran TPT, Bénézet JC, Bergeret A (2014) Rice and Einkorn wheat husks reinforced poly(lactic acid) (PLA) biocomposites: effects of alkaline and silane surface treatments of husks. Ind Crops Prod 58:111–124

    CAS  Google Scholar 

  108. Rosa SML, Santos EF (2009) Studies on the properties of rice-husk-filled-PP composites—effect of maleated PP. Mater Res 12(3):333–338

    CAS  Google Scholar 

  109. Fávaro SL, Lopes MS, Neto AGVC, de Santana RR, Radovanovic E (2010) Chemical, morphological, and mechanical analysis of rice husk/post-consumer polyethylene composites. Compos Part A Appl Sci Manuf 41:154–160

    Google Scholar 

  110. Teixeira NC, Queiroz VAV, Rocha MC, Amorim ACP, Soares TO, Monteiro MAM, de Menezes CB, Schaffert RU, Garcia MAVT, Junqueira RB (2016) Resistant starch content among several sorghum (Sorghum bicolor) genotypes and the effect of heat treatment on resistant starch retentionin two genotypes. Food Chem 197:291–296

    CAS  Google Scholar 

  111. Sambusiti C, Ficara E, Malpei F, Steyer JP, Carrère H (2013) Effect of sodium hydroxide pretreatment on physical, chemical characteristics and methane production of five varieties of sorghum. Energy 55:449–456

    CAS  Google Scholar 

  112. Pannacci E, Bartolini S (2016) Evaluation of sorghum hybrids for biomass production in central Italy. Biomass Bioenergy 88:135–141

    Google Scholar 

  113. Bakeer B, Taha I, El-Mously H, Shehata SA (2013) On the characterisation of structure and properties of sorghum stalks. Ain Shams Eng J 4:265–271

    Google Scholar 

  114. Khazaeian A, Ashori A, Dizaj MY (2015) Department Suitability of sorghum stalk fibers for production of particle board. Carbohydr Polym 120:15–21

    CAS  PubMed  Google Scholar 

  115. Qi C, Yadama V, Guo K, Wolcott MP (2013) Thermal conductivity of sorghum and sorghum-thermoplastic composite panels. Ind Crops Prod 45:455–460

    CAS  Google Scholar 

  116. El Miri N, Abdelouahdi K, Barakat A, Zahouily M, Fihri A, Solhy A, El Achaby M (2015) Bio-nanocomposite films reinforced with cellulose nanocrystals: rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films. Carbohydr Polym 129:156–167

    PubMed  Google Scholar 

  117. Othman ST (2014) Bio-nanocomposite materials for food packaging applications: types of biopolymer and nano-sized Filler. Agric Agric Sci Proc 2:296–303

    Google Scholar 

  118. Suprakas SR, Mosto B (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50:962–1079

    Google Scholar 

  119. Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci Technol 18:84–95

    CAS  Google Scholar 

  120. Kim S, Xu J, Liu S (2010) Production of biopolymer composites by particle bonding. Compos Part A Appl Sci Manuf 41:146–153

    Google Scholar 

  121. Van de Velde K, Kiekens P (2002) Biopolymers: overview of several properties and consequences on their applications. Polym Test 21:433–442

    Google Scholar 

  122. Lu Y, Cueva MC, Lara-Curzio E, Ozcan S (2015) Improved mechanical properties of polylactide nanocomposites-reinforced with cellulose nanofibrils through interfacial engineering via amine-functionalization. Carbohydr Polym 131:208–217

    CAS  PubMed  Google Scholar 

  123. Wang Y, Zhang H, Li M, Cao W, Liu C, Shen C (2015) Orientation and structural development of semicrystalline poly(lactic acid) under uniaxial drawing assessed by infrared spectroscopy and X-ray diffraction. Polym Test 41:163–171

    Google Scholar 

  124. Ahmed J, Varshney SK, Zhang JX, Ramaswamy HS (2009) Effect of high pressure treatment on thermal properties of polylactides. J Food Eng 93:308–312

    CAS  Google Scholar 

  125. Spinella S, Re GL, Liu B, Dorgan J, Habibi Y, Leclere P, Raquez JM, Dubois P, Gross RA (2015) Polylactide/cellulose nanocrystal nanocomposites: efficient routes for nanofiber modification and effects of nanofiber chemistry on PLA reinforcement. Polym 65:9–17

    CAS  Google Scholar 

  126. Zhou Q, Xanthos M (2009) Nanosize and microsize clay effects on the kinetics of the thermal degradation of polylactides. Polym Degrad Stab 94:327–338

    CAS  Google Scholar 

  127. Srithep Y, Ellingham T, Peng J, Sabo R, Clemons C, Turng LH, Pilla S (2013) Melt compounding of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/nanofibrillated cellulose nanocomposites. Polym Degrad Stab 98:1439–1449

    CAS  Google Scholar 

  128. Singh S, Mohanty AK, Sugie T, Takai Y, Hamada H (2008) Renewable resource based biocomposites from natural fiber and polyhydroxybutyrate-co-valerate (PHBV) bioplastic. Compos Part A Appl Sci Manuf 39:875–886

    Google Scholar 

  129. Ding Y, Yao Q, Li W, Schubert DW, Boccaccini AR, Roether JA (2015) The evaluation of physical properties and in vitro cell behavior of PHB/PCL/sol-gel derived silica hybrid scaffolds and PHB/PCL/fumed silica composite scaffolds. Colloids Surf B: Biointerfaces 136:93–98

    CAS  PubMed  Google Scholar 

  130. D’Amico DA, Manfredi LB, Cyras VP (2012) Crystallization behavior of poly(3-hydroxybutyrate) nanocomposites based on modified clays: effect of organic modifiers. Thermochim Acta 544:47–53

    Google Scholar 

  131. Naranjo JM, Cardona CA, Higuita JC (2014) Use of residual banana for polyhydroxybutyrate (PHB) production: case of study in an integrated biorefinery. Waste Manag 34:2634–2640

    CAS  PubMed  Google Scholar 

  132. Zhijiang C, Guang Y (2011) Optical nanocomposites prepared by incorporating bacterial cellulose nanofibrils into poly(3-hydroxybutyrate). Mater Lett 65:182–184

    Google Scholar 

  133. Singh RP, Pandey JK, Rutot D, Degee Ph, Dubois Ph (2003) Biodegradation of poly(ε-caprolactone)/starch blends and composites in composting and culture environments: the effect of compatibilization on the inherent biodegradability of the host polymer. Carbohydr Res 338:1759–1769

    CAS  PubMed  Google Scholar 

  134. Neppalli R, Marega C, Marigo A, Bajgai MP, Kim HY, Causin V (2011) Improvement of tensile properties and tuning of the biodegradation behaviour of polycaprolactone by addition of electrospun fibers. Polym 52:4054–4060

    CAS  Google Scholar 

  135. Song J, Gao H, Zhu G, Cao X, Shi X, Wang Y (2015) The preparation and characterization of polycaprolactone/grapheme oxide biocomposite nanofiber scaffolds and their application for directing cell behaviors. Carbon 95:1039–1050

    CAS  Google Scholar 

  136. Mallakpour S, Nouruzi N (2016) Effect of modified ZnO nanoparticles with biosafe molecule on the morphology and physiochemical properties of novel polycaprolactone nanocomposites. Polym 89:94–101

    CAS  Google Scholar 

  137. Herrera MA, Mathew AP, Oksman K (2014) Gas permeability and selectivity of cellulose nanocrystals films (layers) deposited by spin coating. Carbohydr Polym 112:494–501

    CAS  PubMed  Google Scholar 

  138. Lizundia E, Vilas JL, León LM (2015) Crystallization, structural relaxation and thermal degradation in Poly(l-lactide)/cellulose nanocrystal renewable nanocomposites. Carbohydr Polym 123:256–265

    CAS  PubMed  Google Scholar 

  139. Chandra JCS, George N, Narayanankutty SK (2016) Isolation and characterization of cellulose nanofibrils from arecanut husk fibre. Carbohydr Polym 142:158–166

    Google Scholar 

  140. Khawas P, Deka SC (2016) Isolation and characterization of cellulose nanofibers from culinary banana peel using high-intensity ultrasonication combined with chemical treatment. Carbohydr Polym 137:608–616

    CAS  PubMed  Google Scholar 

  141. Arjmandi R, Hassan A, Haafiz MKM, Zakaria Z (2015) Partial replacement effect of montmorillonite with cellulose nanowhiskers on polylactic acid nanocomposites. Int J Biol Macromol 81:91–99

    CAS  PubMed  Google Scholar 

  142. Kumar A, Negi YS, Choudhary V, Bhardwaj NK (2014) Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. J Mater Phys Chem 2(1):1–8

    Google Scholar 

  143. Hu W, Chen S, Yang J, Li Z, Wang H (2014) Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydr Polym 101:1043–1060

    CAS  PubMed  Google Scholar 

  144. Zhijiang C, Guang Y, Kim J (2011) Biocompatible nanocomposites prepared by impregnating bacterial cellulose nanofibrils into poly(3-hydroxybutyrate). Curr Appl Phys 11:247–249

    Google Scholar 

  145. Martínez-Sanz M, Lopez-Rubio A, Lagaron JM (2013) High-barrier coated bacterial cellulose nanowhiskers films with reduced moisture sensitivity. Carbohydr Polym 98:1072–1082

    PubMed  Google Scholar 

  146. Henrique MA, Silvério HA, Neto WPF, Pasquini D (2013) Valorization of an agro-industrial waste, mango seed, by the extraction and characterization of its cellulose nanocrystals. J Environ Manag 121:202–209

    CAS  Google Scholar 

  147. dos Santos RM, Neto WPF, Silvério HA, Martins DF, Dantas NO, Pasquini D (2013) Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste. Indl Crops Prod 50:707–714

    Google Scholar 

  148. Nordli HR, Chinga-Carrasco G, Rokstad AM, Pukstad B (2016) Producing ultrapure wood cellulose nanofibrils and evaluating the cytotoxity using human skin cells. Carbohydr Polym 150:65–76

    CAS  PubMed  Google Scholar 

  149. Velasquez-Cock J, Ganan P, Posada P, Castro C, Serpa A, Gomez C, Putaux JL, Zuluaga JL (2016) Influence of combined mechanical treatments on the morphology and structure of cellulose nanofibrils: thermal and mechanical properties of resulting films. Ind Crops Prod 85:1–10

    CAS  Google Scholar 

  150. Lizundia E, Fortunati E, Dominici F, Vilas JL, León LM, Armentano I, Torre L, Kenny JM (2016) PLLA-grafted cellulose nanocrystals: role of the CNC content and grafting on the PLA bionanocomposite film properties. Carbohydr Polym 142:105–113

    CAS  PubMed  Google Scholar 

  151. Pirani S, Hashaikeh R (2013) Nanocrystalline cellulose extraction process and utilization of the byproduct for biofuels production. Carbohydr Polym 93:357–363

    CAS  PubMed  Google Scholar 

  152. Slavutsky AM, Bertuzzi MA (2014) Water barrier properties of starch films reinforced with cellulose nanocrystals obtained from sugarcane bagasse. Carbohydr Polym 110:53–61

    CAS  PubMed  Google Scholar 

  153. Ooi SY, Ahmad I, Amin MCIM (2015) Cellulose nanocrystals extracted from rice husks as a reinforcing material in gelatin hydrogels for use in controlled drug delivery systems. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2015.11.082

    Article  Google Scholar 

  154. Kalita E, Nath BK, Deb P, Agan F, Islam MdR, Saikia K (2015) High quality fluorescent cellulose nanofibers from endemic rice husk: isolation and characterization. Carbohydr Polym 122:308–313

    CAS  PubMed  Google Scholar 

  155. Barana D, Salanti A, Orlandi M, Ali DS, Zoia L (2016) Biorefinery process for the simultaneous recovery of lignin, hemicelluloses, cellulose nanocrystals and silica from rice husk and Arundo donax. Ind Crops Prod 86:31–39

    CAS  Google Scholar 

  156. Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crops Prod 37:93–99

    CAS  Google Scholar 

  157. Raquez JM, Murena Y, Goffin AL, Habibi Y, Ruelle B, DeBuy F, Dubois P (2012) Surface-modification of cellulose nanowhiskers and their use as nanoreinforcers into polylactide: a sustainably-integrated approach. Compos Sci Technol 72:544–549

    CAS  Google Scholar 

  158. Sawpan MA, Pickering KL, Fernyhough A (2011) Effect of fibre treatments on interfacial shear strength of hemp fibre reinforced polylactide and unsaturated polyester composites. Compos Part A Appl Sci Manuf 42:1189–1196

    Google Scholar 

  159. Purnama P, Kim SH (2014) Bio-based composite of stereocomplex polylactide and cellulose nanowhiskers. Polym Degrad Stab 109:430–435

    CAS  Google Scholar 

  160. Siqueira G, Bras J, Follain N, Belbekhouche S, Marais S, Dufresne A (2013) Thermal and mechanical properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals. Carbohydr Polym 91:711–717

    CAS  PubMed  Google Scholar 

  161. Mukherjee T, Sani M, Kao N, Gupta R, Quazi N, Bhattacharya S (2013) Improved dispersion of cellulose microcrystals in polylactic acid (PLA) based composites applying surface acetylation. Chem Eng Sci 101:655–662

    CAS  Google Scholar 

  162. Pracella M, Haque MdMU, Puglia D (2014) Morphology and properties tuning of PLA/cellulose nanocrystals bionanocomposites by means of reactive functionalization and blending with PVAc. Polym 55:3720–3728

    CAS  Google Scholar 

  163. Ma H, Zhou B, Li HS, Li YQ, Ou SY (2011) Green composite films composed of nanocrystalline cellulose and a cellulose matrix regenerated from functionalized ionic liquid solution. Carbohydr Polym 84:383–389

    CAS  Google Scholar 

  164. Piekarska K, Sowinski P, Piorkowska E, Haque MdM, Pracella M (2016) Structure and properties of hybrid PLA nanocomposites with inorganic nanofillers and cellulose fibers. Compos Part A Appl Sci Manuf 8:34–41

    Google Scholar 

  165. Costes L, Laoutid F, Khelifa F, Rose G, Brohez S, Delvosalle C, Dubois P (2016) Cellulose/phosphorus combinations for sustainable fire retarded polylactide. Eur Polym J 74:218–228

    CAS  Google Scholar 

  166. Yu HY, Yang XY, Lu FF, Chen GY, Yao JM (2016) Fabrication of multifunctional cellulose nanocrystals/poly(lactic acid)nanocomposites with silver nanoparticles by spraying method. Carbohydr Polym 140:209–219

    CAS  PubMed  Google Scholar 

  167. Frone AN, Berlioz S, Chailan JF, Panaitescu DM (2013) Morphology and thermal properties of PLA-cellulose nanofibers composites. Carbohydr Polym 91:377–384

    CAS  PubMed  Google Scholar 

  168. Spiridon L, Darie RN, Kangas H (2016) Influence of fiber modifications on PLA/fiber composites. Behavior to accelerated weathering. Compos Part B Eng 92:19–27

    CAS  Google Scholar 

  169. Kiziltas A, Nazari B, Kiziltas EE, Gardner DJ, Han Y, Rushing TS (2016) Method to reinforce polylactic acid with cellulose nanofibers via a polyhydroxybutyrate carrier system. Carbohydr Polym 140:393–399

    CAS  PubMed  Google Scholar 

  170. Tanase EE, Popa ME, Râpa M, Popa O (2015) PHB/Cellulose fibers based materials: physical, mechanical and barrier properties. Agric Agric Sci Proc 6:608–615

    Google Scholar 

  171. Cyras VP, Soledad CM, Analía V (2009) Biocomposites based on renewable resource: acetylated and non-acetylated cellulose cardboard coated with polyhydroxybutyrate. Polym 50:6274–6280

    CAS  Google Scholar 

  172. Seoane IT, Manfredi LB, Cyras VP (2015) Properties and processing relationship of polyhydroxybutryate and cellulose biocomposites. Proc Mater Sci 8:807–813

    CAS  Google Scholar 

  173. Figueiredo ARP, Silvestre AJD, Neto CP, Freire CSR (2015) In situ synthesis of bacterial cellulose/polycaprolactone blends for hot pressing nanocomposites films production. Carbohydr Polym 132:400–408

    CAS  PubMed  Google Scholar 

  174. Sanchez-Garcia MD, Gimenez E, Lagaron JM (2008) Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers. Carbohydr Polym 71:235–244

    CAS  Google Scholar 

  175. Lee SH, Teramoto Y, Endo T (2011) Cellulose nanofiber-reinforced polycaprolactone/polypropylene hybrid nanocomposites. Compos Part A Appl Sci Manuf 42:151–156

    Google Scholar 

  176. Cocca M, Avolio R, Gentile G, Di Pace E, Errico ME, Avella M (2015) Amorphized cellulose as filler in biocomposites based on poly(ε-caprolactone). Carbohydr Polym 118:170–182

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tshwafo Elias Motaung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motaung, T.E., Linganiso, L.Z. Critical review on agrowaste cellulose applications for biopolymers. Int J Plast Technol 22, 185–216 (2018). https://doi.org/10.1007/s12588-018-9219-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12588-018-9219-6

Keywords

Navigation