Skip to main content
Log in

Herringbone Structure and Significantly Enhanced Hardness in W-Modified Ti2AlNb Alloys by Spark Plasma Sintering

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The W-modified Ti2AlNb-based alloys synthesized at 1100 °C by spark plasma sintering were solution treated at 1300 °C for 4 h and then aged at 800–1000 °C for 1 h. The phase composition, microstructure evolution, and microhardness of the aged alloys are investigated in this study. A significant enhancement of hardness, ~ 750 HV, is obtained in the alloy aged at 900 °C, while that of the one without W addition is only ~ 470 HV. The hardness is also higher than that of common β-Ti and Ti–6Al–4V alloys. As the ageing temperature increases, the B2/O structure evolves from B2 + O colonies to Widmannstätten structure, followed by a “disordering to ordering” procedure. This process also involves the variation of the angle between adjacent O phase from 90° to 60°. Specifically, a herringbone Widmannstätten B2 + O structure is constructed in the alloys aged in the α2 + B2 + O phase region, which is related to the diffusion of W and the substitution of W for Nb in the lattice of B2 or O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. Banerjee, A.K. Gogia, T.K. Nandi, V.A. Joshi, A new ordered orthorhombic phase in a Ti3Al–Nb alloy. Acta Metall. 36, 871–882 (1988)

    Article  Google Scholar 

  2. J. Kumpfert, Intermetallic alloys based on orthorhombic titanium aluminide. Adv. Eng. Mater. 3, 851–864 (2001)

    Article  Google Scholar 

  3. T.K. Nandy, R.S. Mishra, D. Banerjee, Creep behaviour of an orthorhombic phase in a Ti–Al–Nb alloy. Scripta Mater. 28, 569–574 (1993)

    Article  Google Scholar 

  4. H. Song, Z.J. Wang, X.D. He, Improving in plasticity of orthorhombic Ti2AlNb-based alloys sheet by high density electropulsing. Trans. Nonferrous Metal. Soc. 23, 32–37 (2013)

    Article  Google Scholar 

  5. B. Wu, M. Zinkevich, F. Aldinger, M. Chu, J. Shen, Prediction of the ordering behaviours of the orthorhombic phase based on Ti2AlNb alloys by combining thermodynamic model with ab initio calculation. Intermetallics 16, 42–51 (2008)

    Article  Google Scholar 

  6. D. Banerjee, The intermetallic Ti2AlNb. Prog. Mater Sci. 42, 135–158 (1997)

    Article  Google Scholar 

  7. P.M. Sarosi, J.A. Hriljac, I.P. Jones, Atom location by channelling-enhanced microanalysis and the ordering of Ti2AlNb. Philos. Mag. 83, 4031–4044 (2003)

    Article  Google Scholar 

  8. K. Muraleedharan, T.K. Nandy, D. Banerjee, S. Lele, Phase stability and ordering behaviour of the O phase in Ti–Al–Nb alloys. Intermetallics 3, 187–199 (1995)

    Article  Google Scholar 

  9. W. Wang, W.D. Zeng, Y.T. Liu, G.X. Xie, X.B. Liang, Microstructural evolution and mechanical properties of Ti–22Al–25Nb (At.%) orthorhombic alloy with three typical microstructures. J. Mater. Eng. Perform. 27, 293–303 (2018)

    Article  Google Scholar 

  10. W. Wang, W. Zeng, D. Li, B. Zhu, Y. Zheng, X. Liang, Microstructural evolution and tensile behavior of Ti2AlNb alloys based α2-phase decomposition. Mater. Sci. Eng., A 662, 120–128 (2016)

    Article  Google Scholar 

  11. C.J. Boehlert, C.J. Cowen, C.R. Jaeger, M. Niinomi, T. Akahori, Tensile and fatigue evaluation of Ti–15Al–33Nb (at.%) and Ti–21Al–29Nb (at.%) alloys for biomedical applications. Mater. Sci. Eng., C 25, 263–275 (2005)

    Article  Google Scholar 

  12. S.L. Semiatin, P.R. Smith, Microstructural evolution during rolling of Ti–22Al–23Nb sheet. Mater. Sci. Eng., A 202, 26–35 (1995)

    Article  Google Scholar 

  13. Y.T. Wu, C.T. Yang, C.H. Koo, A.K. Singh, A study of texture and temperature dependence of mechanical properties in hot rolled Ti–25Al–xNb alloys. Mater. Chem. Phys. 80, 339–347 (2003)

    Article  Google Scholar 

  14. J. Yang, G. Wang, X. Jiao, X. Li, C. Yang, Hot deformation behavior and microstructural evolution of Ti–22Al–25Nb–1.0B alloy prepared by elemental powder metallurgy. J. Alloy. Compd. 695, 1038–1044 (2017)

    Article  Google Scholar 

  15. J. Wu, R. Guo, L. Xu, Z. Lu, Y. Cui, R. Yang, Effect of hot isostatic pressing loading route on microstructure and mechanical properties of powder metallurgy Ti2AlNb alloys. J. Mater. Sci. Technol. 33, 172–178 (2017)

    Article  Google Scholar 

  16. H.Z. Niu, Y.F. Chen, D.L. Zhang, Y.S. Zhang, J.W. Lu, W. Zhang, P.X. Zhang, Fabrication of a powder metallurgy Ti2AlNb-based alloy by spark plasma sintering and associated microstructure optimization. Mater. Design 89, 823–829 (2016)

    Article  Google Scholar 

  17. S. Emura, K. Tsuzaki, K. Tsuchiya, Improvement of room temperature ductility for Mo and Fe modified Ti2AlNb alloy. Mater. Sci. Eng. A 528, 355–362 (2010)

    Article  Google Scholar 

  18. Y. Wu, S.K. Hwang, The effect of ageing on microstructure of the O-phase in Ti–24Al–14Nb–3V–0.5Mo alloy. Mater. Lett. 49, 131–136 (2001)

    Article  Google Scholar 

  19. M. Li, Q. Cai, Y. Liu, Z. Ma, Z. Wang, Y. Huang, H. Li, Formation of fine B2/β + O structure and enhancement of hardness in the aged Ti2AlNb-based alloys prepared by spark plasma sintering. Metall. Mater. Trans. A 48, 4365–4371 (2017)

    Article  Google Scholar 

  20. F. Tang, S. Nakazawa, M. Hagiwara, Creep behavior of tungsten-modified orthorhombic Ti–22Al–20Nb–2W alloy. Scr. Mater. 43, 1065–1070 (2000)

    Article  Google Scholar 

  21. F. Tang, S. Emura, M. Hagiwara, Tensile properties of tungsten-modified orthorhombic Ti–22Al–20Nb–2W alloy. Scr. Mater. 44, 671–676 (2001)

    Article  Google Scholar 

  22. S.J. Yang, S.W. Nam, M. Hagiwara, Phase identification and effect of W on the microstructure and micro-hardness of Ti2AlNb-based intermetallic alloys. J. Alloy. Compd. 350, 280–287 (2003)

    Article  Google Scholar 

  23. F.A. Sadi, C. Servant, On the B2 → O phase transformation in Ti–Al–Nb alloys. Mater. Sci. Eng. A 346, 19–28 (2003)

    Article  Google Scholar 

  24. A.A. Popov, A.G. Illarionov, S.V. Grib, S.L. Demakov, M.S. Karabanalov, O.A. Elkina, Phase and structural transformations in the alloy on the basis of the orthorhombic titanium aluminide. Phys. Met. Metallogr. 106, 399–410 (2008)

    Article  Google Scholar 

  25. C.J. Boehlert, B.S. Majumdar, V. Seetharaman, D.B. Miracle, Part I. The microstructural evolution in Ti–Al–Nb O + Bcc orthorhombic alloys. Metall. Mater. Trans. A 30, 2305–2323 (1999)

    Article  Google Scholar 

  26. K. Muraleedharan, A.K. Gogia, T.K. Nandy, D. Banerjee, S. Lele, Transformations in a Ti–24Al–15Nb alloy: Part I Phase equilibria and microstructure. Metall. Mater. Trans. A 23, 401–415 (1992)

    Article  Google Scholar 

  27. H.T. Weykamp, D.R. Baker, D.M. Paxton, M.J. Kaufman, Continuous cooling transformations in Ti3Al + Nb alloys. Scr. Mater. 24, 445–450 (1990)

    Article  Google Scholar 

  28. S. Narasimhan, D. Vanderbilt, Elastic stress domains and the herringbone reconstruction on Au(111). Phys. Rev. Lett. 69, 1564–1567 (1992)

    Article  Google Scholar 

  29. W. Wang, W. Zeng, C. Xue, X. Liang, J. Zhang, Quantitative analysis of the effect of heat treatment on microstructural evolution and microhardness of an isothermally forged Ti–22Al–25Nb (at%) orthorhombic alloy. Intermetallics 45, 29–37 (2014)

    Article  Google Scholar 

  30. D. Li, S. Hu, J. Shen, H. Zhang, X. Bu, Microstructure and mechanical properties of laser-welded joints of Ti–22Al–25Nb/TA15 dissimilar titanium alloys. J. Mater. Eng. Perform. 25, 1880–1888 (2016)

    Article  Google Scholar 

  31. K.Y. Xie, Y. Wang, Y. Zhao, L. Chang, G. Wang, Z. Chen, Y. Cao, X. Liao, E.J. Lavemia, R.Z. Valiev, B. Sarrafpour, H. Zoellner, S.P. Ringer, Nanocrystalline β-Ti alloy with high hardness, low Young’s modulus and excellent in vitro biocompatibility for biomedical applications. Mater. Sci. Eng., C 33, 3530–3536 (2013)

    Article  Google Scholar 

  32. E. Brandl, A. Schoberth, C. Leyens, Morphology, microstructure, and hardness of titanium (Ti–6Al–4V) blocks deposited by wire-feed additive layer manufacturing (ALM). Mater. Sci. Eng., A 532, 295–307 (2012)

    Article  Google Scholar 

  33. Q. Cai, M. Li, Y. Zhang, Y. Liu, Z. Ma, C. Li, H. Li, Precipitation behavior of Widmannstätten O phase associated with interface in aged Ti2AlNb-based alloy. Mater. Charact. 145, 413–422 (2018)

    Article  Google Scholar 

  34. C. Leyens, M. Peters, Titanium and Titanium Alloys: Fundamentals and Applications (Wiley, New York, 2003)

    Book  Google Scholar 

  35. V. Recina, B. Karlsson, Tensile properties and microstructure of Ti–48Al–2W–0.5Si γ-titanium aluminide at temperatures between room temperature and 800 °C. Mater. Sci. Techonl. 15, 57–66 (2013)

    Article  Google Scholar 

  36. Y.I. Frenkel, T. Kontorova, On the theory of plastic deformation and twinning. II. Zh. Eksp. Teor. Fiz. 8, 1340–1348 (1938)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (Granted Nos. 51474156, 51604193, 51804195, and U1660201), the National High Technology Research and Development Program (“863″ Program) of China (Granted No. 2015AA042504), and the China Postdoctoral Science Foundation (Grant No. 2017M621429) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Cai or Yongchang Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Cai, Q., Liu, Y. et al. Herringbone Structure and Significantly Enhanced Hardness in W-Modified Ti2AlNb Alloys by Spark Plasma Sintering. Met. Mater. Int. 25, 1000–1007 (2019). https://doi.org/10.1007/s12540-019-00251-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00251-0

Keywords

Navigation