Skip to main content
Log in

Posterior Cramér Rao Bounds for Cooperative Localization in Low-Cost UAV Swarms

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Cooperative networks of unmanned aerial vehicles (UAV) offer interesting advantages such as increased efficiency and improved accuracy when compared with independently operating UAVs in most applications like remote sensing, mapping, surveillance, exploration, search and rescue, situational awareness, disaster management. However, the quality of the products derived using UAV data is very much dependent on the accuracy with which a UAV can be localized. Although cooperative localization has been shown to improve the localization accuracy of all the UAVs in a network even in global navigation satellite system (GNSS) challenging environments, not all UAVs in a network can achieve equal navigational performance. The objective of this paper is to analyze the various parameters that affect the performance of UAVs in a cooperative network. This paper derives the theoretical performance bound of the localization accuracy that can be achieved by any UAV in the network. This performance bound is derived using posterior Cramér Rao bound and is further used to analyze the effects of various parameters such as network geometry and connectivity, quality of available measurements and the availability of GNSS in the network. Through this analysis, the limitations and the benefits of a cooperative UAV swarm for any application (such as mapping or remote sensing) are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Blanks, A., Vincent, J., & Phalp, K. (2008). Particle swarm guidance system for autonomous unmanned aerial vehicles in an air defence role. Journal of Navigation, 61(01), 9–29.

    Google Scholar 

  • Crocker, R. I., Maslanik, J. A., Adler, J. J., Palo, S. E., Herzfed, U. C., & Emery, W. J. (2012). A sensor package for ice surface observations using small unmanned aircraft systems. IEEE Transactions on Geoscience and Remote Sensing, 50(4), 1033–1047.

    Article  Google Scholar 

  • Gabela, J., Goel, S., Kealy, A., Hedley, M., Moran, B., & Williams, S. (2018). Cramér Rao bound analysis for cooperative positioning in intelligent transportation systems. In Proceedings of the international global navigation satellite systems (IGNSS) conference, February 7–9, 2018, Sydney, Australia. Available at: http://www.ignss2018.unsw.edu.au/sites/ignss2018/files/u80/Papers/IGNSS2018_paper_21.pdf. Accessed 28 October 2018.

  • Gabrlik, P., La Cour-Harbo, A., Kalvodova, P., Zalud, L., & Janata, P. (2018). Calibration and accuracy assessment in a direct georeferencing system for UAV photogrammetry. International Journal of Remote Sensing, 39(15–16), 4931–4959. https://doi.org/10.1080/01431161.2018.1434331.

    Article  Google Scholar 

  • Goel, S. (2017). A distributed cooperative UAV swarm localization system: Development and analysis. In Proceedings of the 30th international technical meeting of the satellite division of the institute of navigation (ION GNSS+ 2017), Portland, Oregon, September 25–29, 2017 (pp. 2501–2518).

  • Goel, S., Kealy, A., Gikas, V., Retscher, G., Toth, C., Brzezinska, D., et al. (2017). Cooperative localization of unmanned aerial vehicles using GNSS, MEMS inertial and UWB sensors. Journal of Surveying Engineering, 13(4), 04017007. https://doi.org/10.1061/(asce)su.1943-5428.0000230.

    Article  Google Scholar 

  • Goel, S., Kealy, A., & Lohani, B. (2016). Cooperative UAS localization using low cost sensors. ISPRS Annals of Photogrammetry Remote Sensing and Spatial Information Sciences, 3(1), 183–190.

    Article  Google Scholar 

  • Goel, S., Kealy, A., & Lohani, B. (2018). Development and experimental evaluation of a low-cost cooperative UAV localization network prototype. Journal of Sensor and Actuator Networks., 7(4), 42. https://doi.org/10.3390/jsan7040042.

    Article  Google Scholar 

  • Gurtner, A., Greer, D. G., Glassrock, R., Mejias, L., Walker, R. A., & Boles, W. W. (2009). Investigation of fish-eye lenses for small-UAV aerial photography. IEEE Transactions on Geoscience and Remote Sensing, 47(3), 709–721.

    Article  Google Scholar 

  • Hafskjold, B. H., Jalving, B., Hagen, P. E., & Gade, K. (2000). Integrated camera-based navigation. Journal of Navigation, 53(02), 237–245.

    Article  Google Scholar 

  • Kay, S. M. (1993). Fundamentals of statistical signal processing: Estimation theory (Vol. 1(4), p. 513). Englewood Cliffs, NJ: Prentince Hall.

    Google Scholar 

  • Larsson, E. G. (2004). Cramér-Rao bound analysis of distributed positioning in sensor networks. IEEE Signal Processing Letters, 11(3), 334–337.

    Article  Google Scholar 

  • Mourikis, A. I., & Roumeliotis, S. I. (2006). Performance analysis of multirobot cooperative localization. IEEE Transactions on Robotics, 22(4), 666–681.

    Article  Google Scholar 

  • Penna, F., Caceres, M. A., & Wymeersch, H. (2010). Cramér Rao bound for hybrid GNSS-terrestrial cooperative positioning. IEEE Communications Letters, 14(11), 1005–1007.

    Article  Google Scholar 

  • Spletzer, J., Das, A. K., Fierro, R., Taylor, C. J., Kumar, V., & Ostrowski, J. P. (2001). Cooperative localization and control for multi-robot manipulation. In Intelligent robots and systems (pp. 631–636).

  • Taylor, J. H. (1978). The Cramér Rao estimation error lower bound computation for deterministic nonlinear systems. In IEEE conference on decision and control (Vol. 17, pp. 343–344).

  • Taylor Jr, R. M., Flanagan, B. P., & Uber, J. A. (2003). Computing the recursive posterior Cramér Rao bound for a nonlinear nonstationary system. In Proceedings of IEEE international conference on acoustics, speech and signal processing, April 6–10 (pp. 673–676).

  • Tichavsky, P., Muravchik, C., & Nehorai, A. (1998). Posterior Cramér Rao bounds for discrete-time nonlinear filtering. IEEE Transactions on Signal Processing, 40, 1386–1396.

    Article  Google Scholar 

  • Turner, D., Lucieer, A., & Wallace, L. (2014). Direct georeferencing of ultrahigh-resolution UAV imagery. IEEE Transactions on Geoscience and Remote Sensing, 52(5), 2738–2745.

    Article  Google Scholar 

  • Uto, K., Seki, H., & Saito, G. (2013). Characterization of rice paddies by a UAV-mounted miniature hyperspectral sensor system. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(2), 851–860.

    Article  Google Scholar 

  • Wallace, L., Musk, R., & Lucieer, A. (2014). An assessment of the repeatability of automatic forest inventory metrics derived from UAV-borne laser scanning data. IEEE Transactions on Geoscience and Remote Sensing, 52(11), 71607169.

    Article  Google Scholar 

  • Wang, W., Peng, Q., & Cai, J. (2009). Waveform-diversity-based millimeter-wave UAV SAR remote sensing. IEEE Transactions on Geoscience and Remote Sensing, 47(3), 691–700.

    Article  Google Scholar 

  • Wymeersch, H., Lien, J., & Win, M. Z. (2009). Cooperative localization in wireless networks. Proceedings of the IEEE, 97(2), 427–450. https://doi.org/10.1109/JPROC.2008.2008853.

    Article  Google Scholar 

  • Xing, M., Jiang, X., Wu, R., Zhou, F., & Bao, Z. (2009). Motion compensation for UAV SAR based on raw radar data. IEEE Transactions on Geoscience and Remote Sensing, 47(8), 2870–2883.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salil Goel.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goel, S., Kealy, A. & Lohani, B. Posterior Cramér Rao Bounds for Cooperative Localization in Low-Cost UAV Swarms. J Indian Soc Remote Sens 47, 671–684 (2019). https://doi.org/10.1007/s12524-018-0899-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-018-0899-3

Keywords

Navigation