Skip to main content

Advertisement

Log in

Decellularized Cryopreserved Allografts as Off-the-Shelf Allogeneic Alternative for Heart Valve Replacement: In Vitro Assessment Before Clinical Translation

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Cryopreserved allogeneic conduits are the elective biocompatible choice among currently available substitutes for surgical replacement in end-stage valvulopathy. However, degeneration occurs in 15 years in adults or faster in children, due to recipient’s immunological reactions to donor’s antigens. Here, human aortic valves were decellularized by TRICOL, based on Triton X-100 and sodium cholate, and submitted to standard cryopreservation (TRICOL-human aortic valves (hAVs)). Tissue samples were analyzed to study the effects of the combined procedure on original valve architecture and donor’s cell removal. Residual amounts of nucleic acids, pathological microorganisms, and detergents were also investigated. TRICOL-hAVs proved to be efficaciously decellularized with removal of donor’s cell components and preservation of valve scaffolding. Trivial traces of detergents, no cytotoxicity, and abrogated bioburden were documented. TRICOL-hAVs may represent off-the-shelf alternatives for both aortic and pulmonary valve replacements in pediatric and grown-up with congenital heart disease patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

TRICOL:

Decellularization methodology (osmotic shock, detergents (Triton X-100 and sodium cholate), and aspecific nucleases)

hAV:

Human aortic valve

HLA:

Human leukocyte antigen

GUCH:

Grown-up with congenital heart disease

CVA:

Human cryopreserved valve allograft

SDS:

Sodium dodecyl sulfate

ECM:

Extracellular matrix

NHB:

Non-heart-beating

HPLC:

High-performance liquid chromatography

MS:

Mass spectrometry

References

  1. Donovan, T. J., Hufnagel, C. A., & Eastcott, H. H. (1992). Techniques of endocardial anastomosis for circumventing the pulmonic valve. J Thoracic Surg, 23(4), 348–359.

    Google Scholar 

  2. Sidhu, P., O’Kane, H., Ali, N., Gladstone, D. J., Sarsam, M. A., Campalani, G., & MacGowan, S. W. (2001). Mechanical or bioprosthetic valves in the elderly: a 20-year comparison. The Annals of Thoracic Surgery, 71(5 Suppl), S257–S260. doi:10.1016/s0003-4975(01)02522-x.

    Article  CAS  PubMed  Google Scholar 

  3. Yuan, S. M., Mishaly, D., Shinfeld, A., & Raanani, E. (2008). Right ventricular outflow tract reconstruction: valved conduit of choice and clinical outcomes. Journal of Cardiovascular Medicine (Hagerstown, Md.), 9, 327–337. doi:10.2459/JCM.0b013e32821626ce.

    Article  Google Scholar 

  4. Simon, P., Kasimir, M. T., Seebacher, G., Weigel, G., Ullrich, R., Salzer-Muhar, U., Rieder, E., & Wolner, E. (2003). Early failure of the tissue engineered porcine heart valve SYNERGRAFT in pediatric patients. European Journal of Cardio-Thoracic Surgery, 23, 1002–1006 discussion 1006. doi:10.1016/S1010-7940(03)00094-0.

    Article  CAS  PubMed  Google Scholar 

  5. Schoen, F. J., & Levy, R. J. (2005). Calcification of tissue heart valve substitutes: progress toward understanding and prevention. The Annals of Thoracic Surgery, 79, 1072–1080. doi:10.1016/j.athoracsur.2004.06.033.

    Article  PubMed  Google Scholar 

  6. Naso, F., Gandaglia, A., Bottio, T., Tarzia, V., Nottle, M. B., d’Apice, A. J., Cowan, P. J., Cozzi, E., Galli, C., Lagutina, I., Lazzari, G., Iop, L., Spina, M., & Gerosa, G. (2013). First quantification of alpha-gal epitope in current glutaraldehyde-fixed heart valve bioprostheses. Xenotransplantation, 20, 252–256. doi:10.1111/xen.12044.

    Article  PubMed  Google Scholar 

  7. Manji, R. A., Zhu, L. F., Nijjar, N. K., Rayner, D. C., Korbutt, G. S., Churchill, T. A., Rajotte, R. V., Koshal, A., & Ross, D. B. (2006). Glutaraldehyde-fixed bioprosthetic heart valve conduits calcify and fail from xenograft rejection. Circulation, 114, 318–327. doi:10.1161/CIRCULATIONAHA.105.549311.

    Article  CAS  PubMed  Google Scholar 

  8. O’Brien, M., Stafford, E., Gardner, M., Pohlner, P., & McGiffin, D. (1987). A comparison of aortic valve replacement with viable cryopreserved and fresh allograft valves with a note on chromosomal studies. The Journal of Thoracic and Cardiovascular Surgery, 94, 812–823.

    PubMed  Google Scholar 

  9. O’Brien, M. F., McGiffin, D. C., Stafford, E. G., et al. (1991). Allograft aortic valve replacement: long-term comparative clinical analysis of the viable cryopreserved and antibiotic 4 °C stored valves. J Cardiac Surg, 6(Suppl), 534–543.

    Article  Google Scholar 

  10. Zhao, X. M., Green, M., Frazer, I. H., Hogan, P., & O’Brien, M. F. (1994). Donor-specific immune response after aortic valve allografting in the rat. Ann Thoracic Surg, 57(5), 1158–1163. doi:10.1016/0003-4975(94)91347-1.

    Article  CAS  Google Scholar 

  11. Cochran, R. P., & Kunzelman, K. S. (1989). Cryopreservation does not alter antigenic expression of aortic allografts. The Journal of Surgical Research, 46(6), 597–599. doi:10.1016/0022-4804(89)90027-9.

    Article  CAS  PubMed  Google Scholar 

  12. Smith, J. D., Ogino, H., Hunt, D., Laylor, R. M., Rose, M. L., & Yacoub, M. H. (1995). Humoral immune response to human aortic valve homografts. The Annals of Thoracic Surgery, 60(2 Suppl), S127–S130. doi:10.1016/0003-4975(95)00275-p.

    Article  CAS  PubMed  Google Scholar 

  13. Shaddy, R. E., Hunter, D. D., Osborne, K. A., Lambert, L. M., Minich, L. L., Hawkins, J. A., McGough, E. C., & Fuller, T. C. (1996). Prospective analysis of HLA immunogenicity of cryopreserved valved allografts used in pediatric heart surgery. Circulation, 94, 1063–1067. doi:10.1161/01.CIR.94.5.1063.

    Article  CAS  PubMed  Google Scholar 

  14. Smith, J. D., Hornick, P. I., Rasmi, N., Rose, M. L., & Yacoub, M. H. (1998). Effect of HLA mismatching and antibody status on “homovital” aortic valve homograft performance. The Annals of Thoracic Surgery, 66, S212–S215. doi:10.1016/s0003-4975(98)01115-1.

    Article  CAS  PubMed  Google Scholar 

  15. Hoekstra, F., Knoop, C., Vaessen, L., Wassenaar, C., Jutte, N., Bos, E., & Weimar, W. (1996). Donor-specific cellular immune response against human cardiac valve allografts. The Journal of Thoracic and Cardiovascular Surgery, 112, 281–286. doi:10.1016/S0022-5223(96)70250-7.

    Article  CAS  PubMed  Google Scholar 

  16. Hoekstra, F., Witvliet, M., Knoop, C., Akkersdijk, G., Jutte, N., Bogers, A., Claas, F., & Weimar, W. (1997). Donor-specific anti-human leukocyte antigen class I antibodies after implantation of cardiac valve allografts. The Journal of Heart and Lung Transplantation, 16, 570–572.

    CAS  PubMed  Google Scholar 

  17. Hoekstra, F. M., Witvliet, M., Knoop, C. Y., Wassenaar, C., Bogers, A. J., Weimar, W., & Claas, F. H. (1998). Immunogenic human leukocyte antigen class II antigens on human cardiac valves induce specific alloantibodies. The Annals of Thoracic Surgery, 66, 2022–2026. doi:10.1016/s0003-4975(98)01058-3.

    Article  CAS  PubMed  Google Scholar 

  18. Lund, O., Chandrasekaran, V., Grocott-Mason, R., Elwidaa, H., Mazhar, R., Khaghani, A., Mitchell, A., Ilsley, C., & Yacoub, M. H. (1999). Primary aortic valve replacement with allografts over twenty-five years: valve-related and procedure-related determinants of outcome. The Journal of Thoracic and Cardiovascular Surgery, 117, 77–90. doi:10.1016/s0022-5223(99)70471-x.

    Article  CAS  PubMed  Google Scholar 

  19. Vogt, P. R., Stallmach, T., Niederhäuser, U., Schneider, J., Zünd, G., Lachat, M., Künzli, A., & Turina, M. I. (2000). Explanted cryopreserved allografts: a morphological and immunohistochemical comparison between arterial allografts and allograft heart valves from infants and adults. European Journal of Cardio-Thoracic Surgery, 15, 639–644 discussion 644-655. doi:10.1016/S1010-7940(99)00053-6.

    Article  Google Scholar 

  20. Dignan, R., O’Brien, M., Hogan, P., et al. (2000). Influence of HLA matching and associated factors on aortic valve homograft function. The Journal of Heart Valve Disease, 9(4), 504–511.

    CAS  PubMed  Google Scholar 

  21. Hawkins, J. A., Breinholt, J. P., Lambert, L. M., Fuller, T. C., Profaizer, T., McGough, E. C., & Shaddy, R. E. (2000). Class I and class II anti-HLA antibodies after implantation of cryopreserved allograft material in pediatric patients. The Journal of Thoracic and Cardiovascular Surgery, 119, 324–330. doi:10.1016/S0022-5223(00)70188-7.

    Article  CAS  PubMed  Google Scholar 

  22. Kannemeier, C., Shibamiya, A., Nakazawa, F., Trusheim, H., Ruppert, C., Markart, P., Song, Y., Tzima, E., Kennerknecht, E., Niepmann, M., von Bruehl, M. L., Sedding, D., Massberg, S., Günther, A., Engelmann, B., & Preissner, K. T. (2007). Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation. Proceedings of the National Academy of Sciences of the United States of America, 104, 6388–6393. doi:10.1073/pnas.0608647104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fischer, S., Grantzow, T., Pagel, J. I., Tschernatsch, M., Sperandio, M., Preissner, K. T., & Deindl, E. (2012). Extracellular RNA promotes leukocyte recruitment in the vascular system by mobilizing pro-inflammatory cytokines. Thrombosis and Haemostasis, 108, 730–741. doi:10.1160/TH12-03-0186.

    Article  CAS  PubMed  Google Scholar 

  24. Cao, H., Ye, H., Sun, Z., Shen, X., Song, Z., Wu, X., He, W., Dai, C., Yang, J., et al. (2014). Circulatory mitochondrial DNA is a pro-inflammatory agent in maintenance hemodialysis patients. PloS One, 9, e113179. doi:10.1371/journal.pone.0113179.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cebotari, S., Mertsching, H., Kallenbach, K., Kostin, S., Repin, O., Batrinac, A., Kleczka, C., Ciubotaru, A., & Haverich, A. (2002). Construction of autologous human heart valves based on an acellular allograft matrix. Circulation, 106, I63–I68. doi:10.1161/01.cir.0000032900.55215.85.

    PubMed  Google Scholar 

  26. Bando, K., Danielson, G. K., Schaff, H. V., Mair, D. D., Julsrud, P. R., & Puga, F. J. (1995). Outcome of pulmonary and aortic homografts for right ventricular outflow tract reconstruction. The Journal of Thoracic and Cardiovascular Surgery, 109(3), 509–517. doi:10.1016/S0022-5223(95)70282-2.

    Article  CAS  PubMed  Google Scholar 

  27. Heng, W. L., Albrecht, H., Chiappini, P., Lim, Y. P., & Manning, L. (2013). International Heart Valve Bank Survey: a review of processing practices and activity outcomes. J Transplant, 2013, 163150. doi:10.1155/2013/163150.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Samouillan, V., Dandurand-Lods, J., Lamure, A., Maurel, E., Lacabanne, C., Gerosa, G., Venturini, A., Casarotto, D., Gherardini, L., & Spina, M. (1999). Thermal analysis characterization of aortic tissues for cardiac valve bioprostheses. Journal of Biomedical Materials Research, 46, 531–538. doi:10.1002/(SICI)1097-4636(19990915)46:4<531::AID-JBM11>3.0.CO;2-2.

    Article  CAS  PubMed  Google Scholar 

  29. Bertipaglia, B., Ortolani, F., Petrelli, L., Gerosa, G., Spina, M., Pauletto, P., Casarotto, D., Marchini, M., & Sartore, S. (2003). Cell characterization of porcine aortic valve and decellularized leaflets repopulated with aortic valve interstitial cells: the VESALIO Project (Vitalitate Exornatum Succedaneum Aorticum Labore Ingenioso Obtenibitur). The Annals of Thoracic Surgery, 75, 1274–1282. doi:10.1016/s0003-4975(02)04706-9.

    Article  PubMed  Google Scholar 

  30. Iop, L., Renier, V., Naso, F., Piccoli, M., Bonetti, A., Gandaglia, A., Pozzobon, M., Paolin, A., Ortolani, F., Marchini, M., Spina, M., De Coppi, P., Sartore, S., & Gerosa, G. (2009). The influence of heart valve leaflet matrix characteristics on the interaction between human mesenchymal stem cells and decellularized scaffolds. Biomaterials, 30, 4104–4116. doi:10.1016/j.biomaterials.2009.04.031.

    Article  CAS  PubMed  Google Scholar 

  31. Gallo, M., Naso, F., Poser, H., Rossi, A., Franci, P., Bianco, R., Micciolo, M., Zanella, F., Cucchini, U., Aresu, L., Buratto, E., Busetto, R., Spina, M., Gandaglia, A., & Gerosa, G. (2012). Physiological performance of a detergent decellularized heart valve implanted for 15 months in Vietnamese pigs: surgical procedure, follow-up, and explant inspection. Artificial Organs, 36, E138–E150. doi:10.1111/j.1525-1594.2012.01447.x.

    Article  CAS  PubMed  Google Scholar 

  32. Iop, L., Bonetti, A., Naso, F., Rizzo, S., Cagnin, S., Bianco, R., Dal Lin, C., Martini, P., Poser, H., Franci, P., Lanfranchi, G., Busetto, R., Spina, M., Basso, C., Marchini, M., Gandaglia, A., Ortolani, F., & Gerosa, G. (2014). Decellularized allogeneic heart valves demonstrate self-regeneration potential after a long-term preclinical evaluation. PloS One, 9, e99593. doi:10.1371/journal.pone.0099593.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Iop, L., & Gerosa, G. (2015). Guided tissue regeneration in heart valve replacement: from preclinical research to first-in-human trials. BioMed Research International doi. doi:10.1155/2015/432901.

    Google Scholar 

  34. Elkins, R. C., Dawson, P. E., Goldstein, S., Walsh, S. P., & Black, S. (2001). Decellularized human valve allografts. The Annals of Thoracic Surgery, 7, S428–S432. doi:10.1016/s0003-4975(01)02503-6.

    Article  Google Scholar 

  35. Helder MR, Kouchoukos ND, Zehr K, Dearani JA, Maleszewski JJ, Leduc C, Heins CN, Schaff HV (2016) Late durability of decellularized allografts for aortic valve replacement: a word of caution. J Thorac Cardiovasc Surg. pii: S0022–5223(16)30024–1 doi: 10.1016/j.jtcvs.2016.03.050

  36. Sarikouch S, Horke A, Tudorache I, Beerbaum P, Westhoff-Bleck M, Boethig D, Repind O, Maniucd L, Ciubotaru A, Haverich A, Cebotari S (2016) Decellularized fresh homografts for pulmonary valve replacement: a decade of clinical experience. Eur J Cardiothorac Surg, pii: ezw050 doi: 0.1093/ejcts/ezw050

  37. Tudorache, I., Horke, A., Cebotari, S., Sarikouch, S., Boethig, D., Breymann, T., Beerbaum, P., Bertram, H., Westhoff-Bleck, M., Theodoridis, K., Bobylev, D., Cheptanaru, E., Ciubotaru, A., & Haverich, A. (2016). Decellularized aortic homografts for aortic valve and aorta ascendens replacement. European Journal of Cardio-Thoracic Surgery, 50, 89–97. doi:10.1093/ejcts/ezw013.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kasimir, M. T., Rieder, E., Seebacher, G., Silberhumer, G., Wolner, E., Weigel, G., & Simon, P. (2003). Comparison of different decellularization procedures of porcine heart valves. The International Journal of Artificial Organs, 26, 421–427. doi:10.5301/IJAO.2008.3028.

    CAS  PubMed  Google Scholar 

  39. Cigliano, A., Gandaglia, A., Lepedda, A. J., Zinellu, E., Naso, F., Gastaldello, A., Aguiari, P., De Muro, P., Gerosa, G., Spina, M., & Formato, M. (2012). Fine structure of glycosaminoglycans from fresh and decellularized porcine cardiac valves and pericardium. Biochem Res Int, 979351. doi:10.1155/2012/979351.

  40. Caamaño, S., Shiori, A., Strauss, S. H., & Orton, E. C. (2009). Does sodium dodecyl sulfate wash out of detergent-treated bovine pericardium at cytotoxic concentrations? The Journal of Heart Valve Disease, 18(1), 101–105.

    PubMed  Google Scholar 

  41. Cebotari, S., Tudorache, I., Jaekel, T., Hilfiker, A., Dorfman, S., Ternes, W., Haverich, A., & Lichtenberg, A. (2010). Detergent decellularization of heart valves for tissue engineering: toxicological effects of residual detergents on human endothelial cells. Artificial Organs, 34, 206–210. doi:10.1111/j.1525-1594.2009.00796.x.

    Article  PubMed  Google Scholar 

  42. McNeel, K. E., Das, S., Siraj, N., Negulescu, I. I., & Warner, I. M. (2015). Sodium deoxycholate hydrogels: effects of modifications on gelation, drug release, and nanotemplating. The Journal of Physical Chemistry. B, 119, 8651–8659. doi:10.1021/acs.jpcb.5b00411.

    Article  CAS  PubMed  Google Scholar 

  43. Kawazoye, S., Tian, S. F., Toda, S., Takashima, T., Sunaga, T., Fujitani, N., Higashino, H., & Matsumura, S. (1995 Jun). The mechanism of interaction of sodium dodecyl sulfate with elastic fibers. Journal of Biochemistry, 117(6), 1254–1260.

    Article  CAS  PubMed  Google Scholar 

  44. Spina M, Naso F, Zancan I, Iop L, Dettin M, Gerosa G (2014) Biocompatibility issues of next generation decellularized bioprosthetic devices. Conference papers in science. Article ID 869240 doi: 10.1155/2014/86924

Download references

Acknowledgements

This study was realized with the financial support of CARIPARO Foundation (Veneto) under the Padova Heart Project grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Laura Iop or Adolfo Paolin.

Ethics declarations

Human/Animal Subjects

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (TRICOL registry, 3291/AO/14, Padua University Hospital and National Transplantation Centre) and with the Helsinki Declaration of 1975, as revised in 2000. This article does not contain any animal study performed by any of the authors.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Associate Editor Adrian Chester oversaw the review of this article

Laura Iop and Adolfo Paolin equally contributed to the study.

Electronic Supplementary Material

ESM 1

(PDF 145 kb)

ESM 2

(PDF 33.5 mb)

ESM 3

(PDF 33.5 mb)

ESM 4

(PDF 33.5 mb)

ESM 5

(PDF 33.5 mb)

ESM 6

(PDF 33.5 mb)

ESM 7

(PDF 33.5 mb)

ESM 8

(PDF 33.5 mb)

ESM 9

(PDF 33.5 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iop, L., Paolin, A., Aguiari, P. et al. Decellularized Cryopreserved Allografts as Off-the-Shelf Allogeneic Alternative for Heart Valve Replacement: In Vitro Assessment Before Clinical Translation. J. of Cardiovasc. Trans. Res. 10, 93–103 (2017). https://doi.org/10.1007/s12265-017-9738-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-017-9738-0

Keywords

Navigation