Skip to main content
Log in

Autotrophic Biodiesel Production from the Thermotolerant Microalga Chlorella sorokiniana by Enhancing the Carbon Availability with Temperature Adjustment

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Chlorella sorokiniana is a thermo-resistant microalga that is widely used for production of biofuel such as biodiesel. When cultured at 37°C under autotrophic conditions, C. sorokiniana showed the highest production of biomass, whereas the cells exhibited the highest production of fatty acids at 30°C. Herein, culture temperature shift was applied to improve autotrophic biodiesel production via the two-stage strategy. In addition, in order to increase biomass production, dissolved inorganic carbon source (mainly bicarbonate ion species), which is essential for photosynthesis, was supplied in the cultures by dissolving the CO2 in alkaline solution. As a result, cell growth increased up to 22% compared to that of the control cells by supplying constant inorganic carbon source into the cultures. The cells cultured under the condition of temperature shift (37°C to 30°C) and bicarbonate solution showed an increase in biodiesel productivity by 31% when compared to the cells that were cultured without such temperature adjustment (37°C to 37°C). In brief, our temperature shift method with bicarbonate buffer system (inorganic carbon supply) will improve biofuel production including biodiesel from C. sorokiniana under autotrophic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buchmann, N. (1999). Net CO2 and H2O fluxes of terrestrial ecosystems. Global Biogeochem

    Article  CAS  Google Scholar 

  2. Goulden, M. L., S. D. Miller, H. R. Da Rocha, M. C. Menton, H. C. de Freitas, A. M. e Silva Figueira, and C. A. D. de Sousa (2004). Diel and seasonal patterns of tropical forest CO2 exchange. Ecol. Appl. 14(sp4): 42–54.

    Article  Google Scholar 

  3. Seth, J. R. and P. P. Wangikar (2015). Challenges and opportunities for microalgae-mediated CO2 capture and biorefinery. Biotechnol, Bioeng.. 112: 1281–1296.

    Article  CAS  Google Scholar 

  4. Kumar, V., M. Muthuraj, B. Palabhanvi, A. K. Ghoshal, and D. Das (2014). Evaluation and optimization of two stage sequential in situ transesterification process for fatty acid methyl ester quantification from microalgae. Renew, Energy. 68: 560–569.

    CAS  Google Scholar 

  5. Kleeff, B. H. A., J. G. Kuenen, and J. J. Heijnen (1993). Continuous measurement of microbial heat production in laboratory fermentors. Biotechnol, Bioeng.. 41: 541–549.

    Article  Google Scholar 

  6. Birol, G., C. Ündey, and A. Çinar (2002). Modular simulation package for fed-batch fermentation: penicillin production. Comput. Chem, Eng.. 26: 1553–1565.

    CAS  Google Scholar 

  7. Starfelt, F., E. Thorin, E. Dotzauer, and J. Yan (2010). Performance evaluation of adding ethanol production into an existing combined heat and power plant. Bioresour, Technol.. 101: 613–618.

    CAS  Google Scholar 

  8. de-Bashan, L. E., A. Trejo, V. A. R. Huss, J.-P. Hernandez, and Y. Bashan (2008). Chlorella sorokiniana UTEX 2805, a heat and intense, sunlight-tolerant microalga with potential for removing ammonium from wastewater. Bioresour, Technol.. 99: 4980–4989.

    CAS  Google Scholar 

  9. Li, T., Y. Zheng, L. Yu, and S. Chen (2013). High productivity cultivation of a heat-resistant microalga Chlorella sorokiniana for biofuel production. Bioresour, Technol.. 131: 60–67.

    CAS  Google Scholar 

  10. Zheng, Y., T. Li, X. Yu, P. D. Bates, T. Dong, and S. Chen (2013). High-density fed-batch culture of a thermotolerant microalga Chlorella sorokiniana for biofuel production. Appl. Energ. 108, 281–287.

    Article  CAS  Google Scholar 

  11. Jeon, H.-S., S. E. Park, B. Ahn, and Y.-K. Kim (2017). Enhancement of biodiesel production in Chlorella vulgaris cultivation using silica nanoparticles. Biotechnol. Bioproc, Eng.. 22: 136–141.

    CAS  Google Scholar 

  12. Kim, J. S., J. Y. Lee, and T. Lu (2016). Enhanced autotrophic growth of Nannochloris sp. with trona buffer for sustainable carbon recycle. Biotechnol. Bioproc. Eng. 21(3): 422–429.

    Google Scholar 

  13. Choi, Y. Y., J. M. Joun, J. Lee, M. E. Hong, H. M. Pham, W. S. Chang, and S. J. Sim (2017). Development of large-scale and economic pH control system for outdoor cultivation of microalgae Haematococcus pluvialis using industrial flue gas. Bioresour, Technol.. 244: 1235–1244.

    CAS  Google Scholar 

  14. Kang, C. D., J. S. Lee, T. H. Park, and S. J. Sim (2005). Comparison of heterotrophic and photoautotrophic induction on astaxanthin production by Haematococcus pluvialis. Appl. Microbiol, Biotechnol.. 68: 237–241.

    CAS  Google Scholar 

  15. Hong, M.-E., S. P. Choi, Y.-I. Park, Y.-K. Kim, W. S. Chang, B. W. Kim, and S. J. Sim (2012). Astaxanthin production by a highly photosensitive Haematococcus mutant. Proc, Biochem.. 47: 1972–1979.

    Article  CAS  Google Scholar 

  16. Fan, J., Y. Cui, M. Wan, W. Wang, and Y. Li (2014). Lipid accumulation and biosynthesis genes response of the oleaginous Chlorella pyrenoidosa under three nutrition stressors. Biotechnol, Biofuels. 7: 17.

    Article  Google Scholar 

  17. Yoon, S. Y., M. E. Hong, W. S. Chang, and S. J. Sim (2015). Enhanced biodiesel production in Neochloris oleoabundans by a semi-continuous process in two stage photobioreactors. Bioproc. Biosyst, Eng.. 38: 1415–1421.

    CAS  Google Scholar 

  18. Aishvarya, V., N. Pradhan, R. R. Nayak, and L. B. Sukla (2012). Enhanced inorganic car-bon uptake by Chlorella sp. IMMTCC-2 under autotrophic conditions for lipid pro-duction and CO2 sequestration. J. Appl, Phycol.. 24: 1455–1463.

    CAS  Google Scholar 

  19. Hong, M. E., Y. Y. Choi, and S. J. Sim (2016). Effect of red cyst cell inoculation and iron (II) supplementation on autotrophic astaxanthin production by Haematococcus pluvialis under outdoor summer conditions. J, Biotechnol.. 218: 25–33.

    CAS  Google Scholar 

  20. Kim, J. Y. H., H. S. Kwak, Y. J. Sung, H. I. Choi, M. E. Hong, H. S. Lim, J.-H. Lee, S. Y. Lee, and S. J. Sim (2016). Microfluidic high-throughput selection of microalgal strains with superior photosynthetic productivity using competitive phototaxis, Scientific Reports. 6: 21155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Santos, A. M., M. Janssen, P. P. Lamers, W. A. C. Evers, and R. H. Wijffels (2012). Growth of oil accumulating microalga Neochloris oleoabundans under alkaline-saline conditions. Bioresour, Technol.. 104: 593–599.

    CAS  Google Scholar 

  22. Chiu, S.-Y., C.-Y. Kao, T.-T. Huang, C.-J. Lin, S.-C. Ong, C.-D. Chen, J.-S. Chang, and C.-S. Lin (2011). Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures. Bioresour, Technol.. 102: 9135–9142.

    CAS  Google Scholar 

  23. Zhang, Y. M., H. Chen, C. L. He, and Q. Wang (2013). Nitrogen starvation induced oxidative stress in an oil-producing green alga Chlorella sorokiniana C3. PLoS One 8: e69225.

    Book  Google Scholar 

  24. Garcia-Mendoza, E., H. C. Matthijs, H. Schubert, and L. R. Mur (2002). Non-photochemical quenching of chlorophyll fluorescence in Chlorella fusca acclimated to constant and dynamic light conditions, Photosynthesis Research. 74: 303.

    Article  CAS  PubMed  Google Scholar 

  25. Yamano T. and H. Fukuzawa (2009). Carbon-concentrating mechanism in a green alga, Chlamydomonas reinhardtii, revealed by transcriptome analysis. J, Basic Microbiol.. 49: 42–51.

    Article  CAS  Google Scholar 

  26. Markelova A. G., M. P. Sinetova, E. V. Kupriyanova, and N. A. Pronina (2009). Distribution and functional role of carbonic anhydrase Cah3 associated with thylakoid membranes in the chloroplast and pyrenoid of Chlamydomonas reinhardtii. Russ. J, Plant Physiol.. 56: 76–768.

    Google Scholar 

  27. Gardner, R. D., E. Lohman, R. Gerlach, K. E. Cooksey, and B. M. Peyton (2013). Comparison of CO2 and bicarbonate as inorganic carbon sources for triacylglycerol and starch accumulation in Chlamydomonas reinhardtii. Biotechnol, Bioeng.. 110: 87–96.

    Article  CAS  Google Scholar 

  28. Li, T., M. Gargouri, J. Feng, J.-J. Park, D. Gao, C. Miao, T. Dong, D. R. Gang, and S. Chen (2015). Regulation of starch and lipid accumulation in a microalga Chlorella sorokiniana. Bioresour, Technol.. 180: 250–257.

    CAS  Google Scholar 

  29. Rizwan, M., G. Mujtaba, and K. Lee (2017). Effects of iron sources on the growth and lipid/carbohydrate production of marine microalga Dunaliella tertiolecta. Biotechnol. Bioproc, Eng.. 22: 68–75.

    CAS  Google Scholar 

  30. Hong, S.-J., Y. S. Park, M.-A. Han (2017). Enhanced production of fatty acids in three strains of microalgae using a combination of nitrogen starvation and chemical inhibitors of carbohydrate synthesis Biotechnol. Bioproc, Eng.. 22: 60–67.

    CAS  Google Scholar 

  31. Hong, M. E., S. K. Hwang, W. S. Chang, B. W. Kim, J. Lee, and S. J. Sim (2015). Enhanced autotrophic astaxanthin production from Haematococcus pluvialis under high temperature via heat stress-driven Haber-Weiss reaction. Appl. Microbiol, Biotechnol.. 99: 5203–5215.

    CAS  Google Scholar 

  32. Canakci, M. and J. V. Gerpen (2001). Biodiesel production from oils and fats with high free fatty acids. T, A.S.A.B.E.. 44: 1429–1436.

    CAS  Google Scholar 

  33. Seto, A., H. Wang, and C. Hesseltine (1984). Culture conditions affect eicosapentaenoic acid content of Chlorella minutissima. J. Am. Oil Chem, Soc.. 61: 892–894.

    CAS  Google Scholar 

  34. Hur, B. K., D. W. Cho, H. J. Kim, C. I. Park, and H. J. Suh (2002). Effect of culture conditions on growth and production of docosahexaenoic acid (DHA) using Thraustochytrium aureum ATCC 34304. Biotechnol, Bioprocess Eng.. 7: 10–15.

    CAS  Google Scholar 

  35. Converti, A., A. A. Casazza, E. Y. Ortiz, P. Perego, and M. De. Borghi (2009). Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem. Eng, Process.: Process Intensific.. 48: 1146–1151.

    CAS  Google Scholar 

  36. Xin, L., H. Hong-Ying, and Z. Yu-Ping (2011). Growth and lipid accumulation properties of a freshwater microalga Scenedesmus sp. under different cultivation temperature. Bioresour, Technol.. 102: 3098–3102.

    Google Scholar 

  37. Lynch, D. V. and G. A. Thompson (1982). Low temperature-induced alterations in the chloroplast and microsomal-membranes of Dunaliella salina, Plant Physiol.. 69: 1369–1375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Israelachvili, J. N., S. Marcelja, and R. G. Horn (1980). Physical principles of membrane organization. Q. Rev, Biophys.. 13: 121–200.

    CAS  Google Scholar 

  39. Chankova, S., Z. Mitrovska, D. Miteva, Y. P. Oleskina, and N. P. Yurina (2013). Heat shock protein HSP70B as a marker for genotype resistance to environmental stress in Chlorella species from contrasting habitats, Gene. 516: 184–189.

    Article  CAS  PubMed  Google Scholar 

  40. Nakamoto, H. and D. Honma (2006). Interaction of a small heat shock protein with light harvesting cyanobacterial phycocyanins under stress conditions, FEBS Letters. 580: 3029–3034.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Jun Sim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, Y.Y., Hong, ME., Chang, W.S. et al. Autotrophic Biodiesel Production from the Thermotolerant Microalga Chlorella sorokiniana by Enhancing the Carbon Availability with Temperature Adjustment. Biotechnol Bioproc E 24, 223–231 (2019). https://doi.org/10.1007/s12257-018-0375-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-018-0375-5

Keywords

Navigation