Skip to main content
Log in

Electrochemical Dopamine Biosensor Composed of Silver Encapsulated MoS2 Hybrid Nanoparticle

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Dopamine is an important neurotransmitter in central nervous system as an indicator of several neurological disorders such as Parkinson’s disease. The accurate monitoring of dopamine level is the significant factor for prevention and diagnosis of various neurological disorders. Commonly used metal nanoparticles such as gold and platinum for electrochemical dopamine detection have limitations such as low sensitivity and low linearity at low concentration of dopamine. In this study, for the first time, silver encapsulated MoS2 (Ag/MoS2) hybrid nanoparticle was developed and spin-coated on the indium tin oxide (ITO) electrode to enhance the electrochemical signal for dopamine detection. This newly developed biosensor induced the well-orientation of Ag/MoS2 hybrid nanoparticle, high reproducibility and high sensitivity at low dopamine concentrations compared to the previously reported biosensors. Thus, our newly fabricated electrochemical biosensor composed of Ag/MoS2 hybrid nanoparticle can be applied to monitor the level of dopamine accurately for diagnosis and prevention of various neurological disorders with the electrochemical signal enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schapira, A. H. V. (2002) Dopamine agonists and neuroprotection in Parkinson’s disease. Eur. J. Neurol. 9: 7–14.

    Article  PubMed  Google Scholar 

  2. Gubernator, N. G., H. Zhang, R. G. W. Staal, E. V. Mosharov, D. B. Pereira, M. Yue, V. Balsanek, P. A. Vadola, B. Mukherjee, R. H. Edwards, D. Sulzer, and D. Sames (2009) Fluorescent false neurotransmitters visualize dopamine release from individual presynaptic terminals. Science 324: 1441–1444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rezaei, B., M. K. Boroujeni, and A. A. Ensafi (2015) Fabrication of DNA, o-phenylenediamine, and gold nanoparticle bioimprinted polymer electrochemical sensor for the determination of dopamine. Biosens. Bioelectron. 66: 490–496.

    Article  CAS  PubMed  Google Scholar 

  4. Shah, S. (2016) The nanomaterial toolkit for neuroengineering. Nano Convergence 3: 25.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Li, D., P. C. Sham, M. J. Owen, and L. He (2006) Meta-analysis shows significant association between dopamine system genes and attention deficit hyperactivity disorder (ADHD). Hum. Mol. Genet. 15: 2276–2284.

    Article  CAS  PubMed  Google Scholar 

  6. Dougherty, D. D., A. A. Bonab, T. J. Spencer, S. L. Rauch, B. K. Madras, and D. A. Fischman (1999) Dopamine transporter density in patients with attention deficit hyperactivity disorder. Lancet 354: 2132–2133.

    Article  CAS  PubMed  Google Scholar 

  7. Nichkova, M., P. M. Wynveen, D. T. Marc, H. Huisman, and G. H. Kellermann (2013) Validation of an ELISA for urinary dopamine: applications in monitoring treatment of dopaminerelated disorders. J. Neurochem. 125: 724–735.

    Article  CAS  PubMed  Google Scholar 

  8. Muzzi, C., E. Bertocci, L. Terzuoli, B. Porcelli, I. Ciari, R. Pagani, and R. Guerranti (2008) Simultaneous determination of serum concentrations of levodopa, dopamine, 3-O-methyldopa and alphamethyldopa by HPLC. Biomed. Pharmacother. 62: 253–258.

    Article  CAS  PubMed  Google Scholar 

  9. Cudjoe, E. and J. Pawliszyn (2014) Optimization of solid phase microextraction coatings for liquid chromatography mass spectrometry determination of neurotransmitters. J. Chromatogr. A 1341: 1–7.

  10. Moghadam, M. R., S. Dadfarnia, A. M. H. Shabani, and P. Shahbazikhah (2011) Chemometric-assited kinetic-spectrophotometric method for simultaneous determination of ascorbic acid, uric acid, and dopamine. Anal. Biochem. 410: 289–295.

    Article  CAS  PubMed  Google Scholar 

  11. Musso, N. R., C. Vergassola, A. Pende, and G. Lotti (1989) Reversed-phase HPLC separation of plasma norepinephrine, epinephrine, and dopamine, with three-electrode coulometric detection. Clin. Chem. 35: 1975–1977.

    Article  CAS  PubMed  Google Scholar 

  12. Han, H. S., H. K. Lee, J.-M. You, H. Jeong, and S. Jeon (2014) Electrochemical biosensor for simultaneous determination of dopamine and serotonin based on electrochemically reduced GOporphyrin. Sens. Actuator B-Chem. 190: 886–895.

    Article  CAS  Google Scholar 

  13. Qian, T., C. Yu, X. Zhou, P. Ma, S. Wu, L. Xu, and J. Shen (2014) Ultrasensitive dopamine sensor based on novel molecularly imprinted polypyrrole coated carbon nanotubes. Biosens. Bioelectron. 58: 237–241.

    Article  CAS  PubMed  Google Scholar 

  14. Rahman, S. F., K. Min, S.-H. Park, J.-H. Park, J. C. Yoo, and D.-H. Park (2016) Selective determination of dopamine with an amperometric biosensor using electrochemically pretreated and activated carbon/tyrosinase/Nafion®-modified glassy carbon electrode. Biotechnol. Bioprocess Eng. 21: 627–633.

    Article  CAS  Google Scholar 

  15. Sun, C.-L., H.-H. Lee, J.-M. Yang, and C.-C. Wu (2011) The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites. Biosens. Bioelectron. 26: 3450–3455.

    Article  CAS  PubMed  Google Scholar 

  16. Lee, T., A. K. Yagati, F. Pi, A. Sharma, J.-W. Choi, and P. Guo (2015) Construction of RNA-quantum dot chimera for nanoscale resistive biomemory application. ACS Nano 9: 6675–6682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee, T., S.-U. Kim, J. Min, and J.-W. Choi (2010) Multilevel biomemory device consisting of recombinant azurin/cytochrome c. Adv. Mater. 22:510–514.

    Google Scholar 

  18. Meyyappan, M. (2015) Nano biosensors for neurochemical monitoring. Nano Convergence 2: 18.

    Article  Google Scholar 

  19. Yang, Y. J. and W. Li (2014) CTAB functionalized graphene oxide/multiwalled carbon nanotube composite modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite. Biosens. Bioelectron. 56: 300–306.

    Article  CAS  PubMed  Google Scholar 

  20. Dalmia, A., C. C. Liu, and R. F. Savinell (1997) Electrochemical behavior of gold electrodes modified with self-assembled monolayers with an acidic end group for selective detection of dopamme. J. Electroanal. Chem. 430: 205–214.

    Article  CAS  Google Scholar 

  21. Guo, S., D. Wen, Y. Zhai, S. Dong, and E. Wang (2010) Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: one-pot, rapid synthesis, and used as new electrode material for electrochemical sensing. ACS Nano 4: 3959–3968.

    Article  CAS  PubMed  Google Scholar 

  22. Lee, T., T.-H. Kim, J. Yoon, Y.-H. Chung, J. Y. Lee, and J.-W. Choi (2016) Investigation of hemoglobin/gold nanoparticle heterolayer on micro-gap for electrochemical biosensor application. Sensors 16: 660.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Li, S.-M., Y.-S. Wang, S.-T. Hsiao, W.-H. Liao, C.-W. Lin, S.-Y. Yang, H.-W. Tien, C.-C. M. Ma, and C.-C. Hu (2015) Fabrication of a silver nanowire-reduced graphene oxide-based electrochemical biosensor and its enhanced sensitivity in the simultaneous determination of ascorbic acid, dopamine, and uric acid, J. Mater. Chem. C. 3: 9444.

    Article  CAS  Google Scholar 

  24. Zeis, R., A. Mathur, G. Fritz, J. Lee, and J. Erlebacher (2007) Platinum-plated nanoporous gold: an efficient, low Pt loading electrocatalyst for PEM fuel cells. J. Power Sources 165: 65–72.

    Article  CAS  Google Scholar 

  25. Chen, A. and S. Chatterjee (2013) Nanomaterials based electrochemical sensors for biomedical applications. Chem. Soc. Rev. 42: 5425–5438.

    Article  CAS  PubMed  Google Scholar 

  26. Wang, X., F. Nan, J. Zhao, T. Yang, T. Ge, and K. Jiao (2015) A label-free ultrasensitive electrochemical DNA sensor based on thin-layer MoS2 nanosheets with high electrochemical activity. Biosens. Bioelectron. 64: 386–391.

    Article  CAS  PubMed  Google Scholar 

  27. Xiao, W., W. Zhou, T. Feng, Y. Zhang, H. Liu, and L. Tian (2016) Simple synthesis of molybdenum disulfide/reduced graphene oxide composite hollow microspheres as supercapacitor electrode material. Materials 9: 738.

    Article  Google Scholar 

  28. Yoon, J., T. Lee, G. B. Bapurao, J. Jo, B.-K. Oh, and J.-W. Choi (2017) Electrochemical H2O2 biosensor composed of myoglobin on MoS2 nanoparticle-graphene oxide hybrid structure. Biosens. Bioelectron. 93: 14–20.

    Article  CAS  PubMed  Google Scholar 

  29. Mohammadniaei, M., J. Yoon, T. Lee, B. G. Bharate, J. Jo, D. Lee, and J.-W. Choi (2018) Electrochemical biosensor composed of silver ion-mediated dsDNA on Au-encapsulated Bi2Se3 nanoparticles for the detection of H2O2 released from breast cancer cells. Small 14: 1703970.

    Article  Google Scholar 

  30. Zhou, L., H. Zhang, H. Bao, G. Liu, Y. Li, and W. Cai (2018) Decoration of Au nanoparticles on MoS2 nanospheres: From janus to core/shell structure. J. Phys. Chem. C 122: 8628–8636.

    Article  CAS  Google Scholar 

  31. Shin, J.-W., K.-J. Kim, J. Jo, W. A. El-Said, and J.-W. Choi (2017) Silver nanoparticle modified electrode covered by graphene oxide for the enhanced electrochemical detection of dopamine. Sensors 17: 2771.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Park, S.-K., S.-H. Yu, S. Woo, J. Ha, J. Shin, Y.-E. Sung, and Y. Piao (2012) A facile and green strategy for the synthesis of MoS2 nanospheres with excellent Li-ion storage properties. Crystengcomm 14: 8323–8325.

    Article  CAS  Google Scholar 

  33. Ding, S., D. Zhang, J. S. Chen, and X. W. Lou (2012) Facile synthesis of hierarchical MoS2 microspheres composed of fewlayered nanosheets and their lithium storage properties. Nanoscale 4: 95–98.

    Article  CAS  PubMed  Google Scholar 

  34. Pumera, M. and A. H. Loo (2014) Layered transition-metal dichalcogenides (MoS2 and WS2) for sensing and biosensing. Trac-Trends Anal. Chem. 61: 49–53.

    Article  CAS  Google Scholar 

  35. Chang, K. and W. Chen (2011) L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5: 4720–4728.

    Article  CAS  PubMed  Google Scholar 

  36. Sreenivasulu, V., N. S. Kumar, M. Suguna, M. Asif, E. H. Al-Ghurabi, Z. X. Huang, and Z. Zhen (2016) Biosynthesis of silver nanoparticles using mimosa pudica plant root extract: characterization, antibacterial activity and electrochemical detection of dopamine. Int. J. Electrochem. Sci. 11: 9959–9971.

    Article  CAS  Google Scholar 

  37. Yang, T., H. Chen, C. Jing, S. Luo, W. Li, and K. Jiao (2017) Using poly(m-aminobenzenesulfonic acid)-reduced MoS2 nanocomposite synergistic electrocatalysis for determination of dopamine. Sens. Actuator B-Chem. 249: 451–457.

    Article  CAS  Google Scholar 

  38. Zou, H. L., B. L. Li, H. Q. Luo, and N. B. Li (2017) 0D-2D heterostructures of Au nanoparticles and layered MoS2 for simultaneous detections of dopamine, ascorbic acid, uric acid, and nitrite. Sens. Actuator B-Chem. 253: 352–360.

    Article  CAS  Google Scholar 

  39. Pramoda, K., K. Moses, U. Maitra, and C. N. R. Rao (2015) Superior performance of a MoS2-RGO composite and a borocarbonitride in the electrochemical detection of dopamine, uric acid and adenine. Electroanalysis 27: 1892–1898.

    Article  CAS  Google Scholar 

  40. Tashkhourian, J., M. R. H. Nezhad, J. Khodavesi, and S. Javadi (2009) Silver nanoparticles modified carbon nanotube paste electrode for simultaneous determination of dopamine and ascorbic acid. J. Electroanal. Chem. 633: 85–91.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-Woo Choi.

Electronic supplementary material

Fig. S1.

Amperometric i-t curve of the electrochemical biosensor composed of Ag/MoS2 hybrid nanoparticle with 4 % human serum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, JW., Yoon, J., Shin, M. et al. Electrochemical Dopamine Biosensor Composed of Silver Encapsulated MoS2 Hybrid Nanoparticle. Biotechnol Bioproc E 24, 135–144 (2019). https://doi.org/10.1007/s12257-018-0350-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-018-0350-1

Keywords

Navigation