Skip to main content
Log in

Pedigree Reconstruction with Genome-Wide Markers in Potato

  • Short Communication
  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Reliable pedigree information facilitates a scientific approach to breeding, but errors can be introduced in many stages of a breeding program. Our objective was to use single nucleotide polymorphisms (SNPs) to check the pedigree records of elite North American potato germplasm. A population of 719 tetraploids was genotyped with an Infinium SNP array, yielding 5063 high-quality markers. Based on pedigree records, the dataset contained 198 parent-offspring trios, of which 182 were consistent with the marker data. For 13 of the 16 trios with a pedigree error, the true parent was identified in the population. By comparing the additive relationship matrix calculated from pedigree with the genetic distance calculated from markers, an additional 24 pedigree modifications were proposed, including the paternity of several varieties developed with bulk pollen. To ensure accurate pedigree records are published in the future, we recommend that new varieties be SNP genotyped and checked against this dataset.

Resumen

La información confiable sobre el pedigree facilita un enfoque científico para el mejoramiento genético, pero se pueden introducir errores en muchas etapas de un programa de mejoramiento. Nuestro objetivo fue usar polimorfismos de un solo nucleótido (SNPs) para cotejar los archivos de pedigree de germoplasma élite de papa de Norteamérica. Una población de 719 tetraploides fue genotipada con una colección de SNPs en una plataforma Infinium, obteniendo 5063 marcadores de alta calidad. Con base a los records del pedigree, la hoja de datos contenía 198 tríos de descendientes con sus padres, de los cuales 182 fueron consistentes con los datos de marcadores. Para 13 de 16 tríos con error de pedigree, se identificó al progenitor verdadero en la población. Al comparar la matriz de relación aditiva calculada del pedigree con la distancia genética calculada de los marcadores, se propusieron 24 modificaciones adicionales al pedigree, incluyendo la paternidad de varias variedades desarrolladas con polen masivo. Para asegurar que a futuro sean publicados registros precisos de pedigree, recomendamos que las nuevas variedades sean genotipadas utilizando SNPs y se cotejen con esta hoja de datos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Baldwin, S.J., K.G. Dodds, B. Auvray, R.A. Genet, R.C. Macknight, and J.M.E. Jacobs. 2011. Association mapping of cold-induced sweetening in potato using historical phenotypic data. Annals of Applied Biology 158: 248–256.

    Article  CAS  Google Scholar 

  • Bernardo, R. 1996. Best linear unbiased prediction of maize single-cross performance. Crop Science 36: 50–56.

    Article  Google Scholar 

  • Bourke, P.M., R.E. Voorrips, R.G.F. Visscher, and C. Maliepaard. 2015. The double-reduction landscape in tetraploid potato as revealed by a high-density linkage map. Genetics 201: 853–863.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown, C.R., I. Vales, S. Yilma, S. James, B. Charlton, D. Culp, D. Hane, C. Shock, E. Feibert, M. Pavek, R. Knowles, R. Novy, J. Whitworth, J. Stark, J. Creighton Miller Jr., D. Holm, R. Quick, and R. Novarre. 2012. “AmaRosa,” a red skinned, red fleshed fingerling with high phytonutrient value. American Journal of Potato Research 89: 249–254.

    Article  CAS  Google Scholar 

  • De Jong, H. 1991. Inheritance of anthocyanin pigmentation in the cultivated potato: a critical review. American Journal of Potato Research 68: 585–593.

    Article  Google Scholar 

  • Douches, D.S., and K. Ludlam. 1991. Electrophoretic characterization of north American potato cultivars. American Journal of Potato Research 68: 767–780.

    Article  Google Scholar 

  • Douches, D.S., K. Ludlam, and R. Freyre. 1991. Isozyme and plastid DNA assessment of pedigrees of nineteenth century potato cultivars. Theoretical and Applied Genetics 82: 195–200.

    Article  CAS  PubMed  Google Scholar 

  • Endelman, J.B., and S.H. Jansky. 2016. Genetic mapping with an inbred line-derived F2 population in potato. Theoretical and Applied Genetics 129: 935–943.

    Article  CAS  PubMed  Google Scholar 

  • Felcher, K.J., J.J. Coombs, A.N. Massa, C.N. Hansey, J.P. Hamilton, R.E. Veilleux, C.R. Buell, and D.S. Douches. 2012. Integration of two diploid potato linkage maps with the potato genome sequence. PloS One 7: e36347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton, J.P., C.N. Hansey, B.R. Whitty, K. Stoffel, A.N. Massa, A. Van Deynze, W.S. De Jong, D.S. Douches, and C.R. Buell. 2011. Single nucleotide polymorphism discovery in elite north American potato germplasm. BMC Genomics 12: 302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henderson, C.R. 1976. A simple method for computing the inverse of a numerator relationship matrix used in prediction of breeding values. Biometrics 32: 69–83.

    Article  Google Scholar 

  • Hirsch, C.N., C.D. Hirsch, K. Felcher, J. Coombs, D. Zarka, A. Van Deynze, W. De Jong, R.E. Veilleux, S. Jansky, P. Bethke, D.S. Douches, and C.R. Buell. 2013. Retrospective view of north American potato (Solanum tuberosum L.) breeding in the 20th and 21st centuries. G3: Genes, Genomes. Genetics 3: 1003–1013.

    Google Scholar 

  • Jones, A.G., and W.R. Ardren. 2003. Methods of parentage analysis in natural populations. Molecular Ecology 12: 2511–2523.

    Article  CAS  PubMed  Google Scholar 

  • Kerr, R.J., L. Li, B. Tier, G.W. Dutkowski, and T.A. McRae. 2012. Use of the numerator relationship matrix in genetic analysis of autopolyploid species. Theoretical and Applied Genetics 124: 1271–1282.

    Article  PubMed  Google Scholar 

  • Malosetti, M., C.G. van der Linden, B. Vosman, and F.A. van Eeuwijk. 2007. A mixed-model approach to association mapping using pedigree information with an illustration of resistance to Phytophthora infestans in potato. Genetics 175: 879–889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGrath, J.M., S.M. Wielgus, T.F. Uchytil, H. Kim-Lee, G.T. Haberlach, C.E. Williams, and J.P. Helgeson. 1994. Recombination of Solanum brevidens chromosomes in the second backcross generation from a somatic hybrid with S. tuberosum. Theoretical and Applied Genetics 88: 917–924.

    Article  CAS  PubMed  Google Scholar 

  • Muñoz, P.R., M.F.R. Resende Jr., D.A. Huber, T. Quesada, M.D.V. Resende, D.B. Neale, J.L. Wegrzyn, M. Kirst, and G.F. Peter. 2014. Genomic relationship matrix for correcting pedigree errors in breeding populations: impact on genetic parameters and genomic selection accuracy. Crop Science 54: 1115–1123.

    Article  Google Scholar 

  • R Development Core Team. 2015. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Schmitz Carley, C.A., J. Coombs, D.S. Douches, P.C. Bethke, J.P. Palta, R.G. Novy, and J.B. Endelman. 2017. Automated tetraploid genotype calling by hierarchical clustering. Theoretical and Applied Genetics. doi:10.1007/s00122-016-2845-5.

  • Spanoghe, M., T. Marique, J. Riviere, D. Lanterbecq, and M. Gadenne. 2015. Investigation and development of potato parentage analysis methods using multiplexed SSR fingerprinting. Potato Research 58: 43–65.

    Article  CAS  Google Scholar 

  • Slater, A.T., G.M. Wilson, N.O.I. Cogan, J.W. Forster, and B.J. Hayes. 2014. Improving the analysis of low heritability complex traits for enhanced genetic gain in potato. Theoretical and Applied Genetics 127: 809–820.

    Article  CAS  PubMed  Google Scholar 

  • Song, Y., and A. Schwarzfischer. 2008. Development of STS markers for selection of extreme resistance (Rysto) to PVY and maternal pedigree analysis of extremely resistant cultivars. American Journal of Potato Research 85: 159–170.

    Article  CAS  Google Scholar 

  • Vales, M.I., C.R. Brown, S. Yilma, D.C. Hane, S.R. James, C.C. Shock, B.A. Charlton, E. Karaagac, A.R. Mosley, D. Culp, E. Feibert, J.C. Stark, M.J. Pavek, N.R. Knowles, R. Novy, and J.L. Whitworth. 2012. Purple pelisse: a specialty ‘fingerling’ potato with purple skin and flesh and medium specific gravity. American Journal of Potato Research 89: 306–314.

    Article  Google Scholar 

  • van Berloo, R., R.C.B. Hutten, H.J. van Eck, and R.G.F. Visser. 2007. An online potato pedigree database resource. Potato Research 50: 45–57.

    Article  Google Scholar 

  • Visscher, P.M., J.A. Woolliams, D. Smith, and J.L. Williams. 2002. Estimation of pedigree errors in the UK dairy population using microsatellite markers and the impact on selection. Journal of Dairy Science 85: 2368–2375.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., P.C. Bethke, A.J. Bussan, M.T. Glynn, D.G. Holm, F.M. Navarro, R.G. Novy, J.P. Palta, M.J. Pavek, G.A. Porter, V.R. Sathuvalli, A.L. Thompson, P.J. Voglewede, J.L. Whitworth, D.I. Parish, and J.B. Endelman. 2016. Acrylamide-forming potential and agronomic properties of elite U.S. potato germplasm from the National Fry Processing Trial. Crop Science 56: 30–39.

    Article  Google Scholar 

  • Weaver, W.W. 2000. 100 vegetables and where they came from. Chapel Hill: Algonquin Books.

    Google Scholar 

Download references

Acknowledgments

Financial support for this research was provided by Potatoes USA (formerly the U.S. Potato Board), state potato industry boards, the National Chip and Fry Processing Trial consortia, and USDA-NIFA-Hatch Project Number 1002731. The authors thank Felix Navarro and Horia Groza for contributing pedigree records.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey B. Endelman.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(CSV 5 kb)

ESM 2

(CSV 3241 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Endelman, J.B., Schmitz Carley, C.A., Douches, D.S. et al. Pedigree Reconstruction with Genome-Wide Markers in Potato. Am. J. Potato Res. 94, 184–190 (2017). https://doi.org/10.1007/s12230-016-9556-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-016-9556-y

Keywords

Navigation