Skip to main content

Advertisement

Log in

Cultivable microscopic fungi from an underground chemosynthesis-based ecosystem: a preliminary study

  • Original Article
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Movile Cave, a unique groundwater ecosystem in southern Romania, was discovered in 1986. This chemoautotrophic cave contains an abundant and diverse fauna with terrestrial and aquatic invertebrate communities, including 33 endemic species. Since its discovery, studies have focused mainly on cave chemoautotrophic bacteria, while the microfungal community has been largely neglected. In this study, we determined the microfungal species living on various substrates in Movile Cave and compared this spectrum with the mycobiota detected outside the cave (outside air-borne and soil-borne microfungi). To investigate all of the niches, we collected samples for two consecutive years from the dry part of the cave (cave air and sediment, corroded limestone walls, isopod feces, and isopod and spider cadavers) and from the post-siphon part of the cave, i.e., Airbell II (sediment and floating microbial mat). A total of 123 microfungal species were identified from among several hundred isolates. Of these, 96 species were only detected in the cave environment and not outside of the cave, while 90 species were from the dry part of the cave and 28 were from Airbell II. The most diverse genera were Penicillium (at least 18 species) and Aspergillus (14 species), followed by Cladosporium (9 species). Surprisingly, high CFU counts of air-borne microfungi were found inside the cave; they were even higher than outside the cave during the first year of investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Al-Doory J (1967) The occurrence of keratinophilic fungi in Texas soil. Mycopathol Mycol Appl 33:105–112

    Article  CAS  PubMed  Google Scholar 

  • Atlas RM (2010) Handbook of microbiological media. CRC Press, Boca Raton, London and New York

  • Barton HA, Luiszer F (2005) Microbial metabolic structure in a sulfidic cave hot spring: potential mechanisms of biospeleogenesis. J Cave Karst Stud 67:28–38

    CAS  Google Scholar 

  • Bensch K, Braun U, Groenewald JZ, Crous P (2012) The genus Cladosporium. Stud Mycol 72:1–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boston PJ, Hose LD, Northup DE, Spilde MN (2006) The microbial communities of sulfur caves: a newly appreciated geologically driven system on Earth and potential model for Mars. In: Harmon RS, Wicks C (eds) Perspectives on karst geomorphology, hydrology, and geochemistry—a tribute volume to Derek C. Ford and William B. White. Geol S Am S 404: 331–344

  • Buttner MP, Stetzenbach LD (1991) Evaluation of four aerobiological sampling methods for the retrieval of aerosolized Pseudomonas syringae. Appl Environ Microb 57:1268–1270

    CAS  Google Scholar 

  • Campbell BJ, Engel AS, Porter ML, Takai K (2006) The versatile e-proteobacteria: key players in the sulphur cycle. Nat Rev Microbiol 4:458–468

    Article  CAS  PubMed  Google Scholar 

  • Canganella F, Bianconi G, Gambacorta A, Kato C, Uematsu K (2002) Characterisation of heterotrophic microorganisms isolated from the “Grotta Azzura” of Cape Palinuro (Salerno, Italy). Mar Ecol 23:1–10

    Article  Google Scholar 

  • Cathrine SJ, Raghukumar C (2009) Anaerobic denitrification in fungi from the coastal marine sediments off Goa, India. Mycol Res 113:100–109

    Article  PubMed  Google Scholar 

  • Chen Y, Wu L, Boden R, Hillebrand A, Kumaresan D, Moussard H, Baciu M, Lu Y, Murrell JC (2009) Life without light: microbial diversity and evidence of sulfur- and ammonium-based chemolithotrophy in Movile Cave. ISME J 3:1093–1104

    Article  CAS  PubMed  Google Scholar 

  • de Hoog GS, Guarro J, Gené J, Figueras MJ (2001) Atlas of clinical fungi. CBS, Utrecht

  • Doley K, Dudhane M, Borde M, Jite PK (2014) Effects of Glomus fasciculatium and Trichoderma asperelloides in roots of groundnut (CV. Western-51) against pathogen Sclerotiorum rolfsii. Int J Pathol 3(2):89–100

    Google Scholar 

  • Domsch KH, Gams W, Anderson T-H (2007) Compendium of soil fungi. 2nd edn. IHG Verlag, Eching

  • Druzhinina IS, Kubicek CP, Komoń-Zelazowska M, Mulaw BT, Bisset J (2010) The Trichoderma harzianum demon: complex speciation history resulting in coexistence of hypothetical biological species, recent agamospecies and numerous relict lineages. Evol Biol 10:94–117

    Google Scholar 

  • Engel AS (2007) Observations on the biodiversity of sulfidic karst habitats. J Cave Karst Stud 69:187–206

    CAS  Google Scholar 

  • Engel AS, Porter ML, Kinkle BK, Kane TC (2001) Ecological assessment and geological significance of microbial communities from Cesspool Cave, Virginia. Geomicrobiol J 18:259–274

    Article  CAS  Google Scholar 

  • Engel AS, Meisinger DB, Porter ML, Payn RA, Schmid M, Stern LA, Schleifer KH, Lee NM (2009) Linking phylogenetic and functional diversity to nutrient spiraling in microbial mats from Lower Kane Cave (USA). ISME J 4:98–110

    Article  CAS  PubMed  Google Scholar 

  • Falniowski A, Szarowska M, Sirbu I, Hillebrand A, Baciu M (2008) Heleobia dobrogica (Grossu & Negrea, 1989) (Gastropoda, Rissooidea: Cochliopidae) and the estimated time of isolement in a continental analogue of hydrothermal vents. Molluscan Res 28(3):165–170

    Google Scholar 

  • Flot J-F, Bauermeister J, Brad T, Hillebrand-Voiculescu AM, Sarbu S, Dattagupta S (2015) Niphargus-Thiothrix associations may be widespread in sulphidic groundwater ecosystems: evidence from southeastern Romania. Mol Ecol 23(6):1405–1417

    Article  Google Scholar 

  • Forti P, Galdenzi C, Sarbu SM (2002) The hypogenic caves: a powerful tool for the study of seeps and their environmental effects. Cont Shelf Res 2:2372–2386

    Google Scholar 

  • Garrett SD (1981) Soil fungi and soil fertility: an introduction to soil mycology. Pergamon Press, Oxford

  • Hose LD, Palmer AN, Palmer MV, Northup DE, Boston PJ, DuChene HR (2000) Microbiology and geochemistry in a hydrogen-sulphide rich karst environment. Chem Geol 169:399–423

    Article  CAS  Google Scholar 

  • Hubbard DA, Herman JS, Bell PE (1986) The role of sulfide oxidation in the genesis of Cesspool Cave, Virginia, USA. In: Proceedings of the 9th International Congress of Speleology, Barcelona, Spain, Barcelona, vol 1 pp. 255–257

  • Hubka V, Kolařík M (2012) β-tubulin paralogue tubC is frequently misidentified as the benA gene in Aspergillus section Nigri taxonomy: primer specificity testing and taxonomic consequences. Persoonia 29:1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubka V, Kolařík M, Kubátová A, Peterson SW (2013) Taxonomical revision of Eurotium and transfer of species to Aspergillus. Mycologia 105:912–937

    Article  PubMed  Google Scholar 

  • Hubka V, Nováková A, Kolařík M, Jurjević Z, Peterson SW (2015) Revision of Aspergillus section Flavipedes: seven new species and proposal of section Jani sect. nov. Mycologia 107(1):169–208

    Article  PubMed  Google Scholar 

  • Hubka V, Nováková A, Samson RA, Houbraken J, Frisvad J, Sklenář F, Varga J, Kolařík M (2016) Aspergillus europaeus sp. nov., a widely distributed soil-borne species related to A. wentii (section Cremei). Plant Syst Evol 302:641–650

    Article  CAS  Google Scholar 

  • Hutchens E, Radajewski S, Dumont MG, McDonald IR, Murrell JC (2004) Analysis of methanotrophic bacteria in Movile Cave by stable isotope probing. Environ Microbiol 6(2):111–120

    Article  CAS  PubMed  Google Scholar 

  • Kopchinskiy AG, Komon M, Kubicek CP, Druzhinina IS (2005) TrichoBLAST: a multilocus database for Trichoderma and Hypocrea identifications. Mycol Res 109:657–660

    Article  Google Scholar 

  • Kreisel H, Schauer F (1987) Methoden des mykologischen Laboratoriums. VEB Gustav Fischer Verlag, Stuttgart

  • Kumaresan D, Wischer D, Stephenson J, Hillebrand A, Murrell JC (2014) Microbiology of Movile Cave—a chemolithoautotrophic ecosystem. Geomicrobiol J 31(3):186–193

    Article  CAS  Google Scholar 

  • Lascu C (1989) Paleogeographical and hydrogeological hypothesis regarding the origin of a peculiar cave fauna. Miscellan Speolog Roman 1:13–18

    Google Scholar 

  • Lascu C, Popa R, Sarbu S (1995) Le karst de Movile (Dobroudja du Sud) (II). Rev Roum Géogr 39:31–40

    Google Scholar 

  • Luangsa-ard JJ, Houbraken J, van Doorn T, Hong S-B, Borman AM, Hywel-Jones NL, Samson R (2011) Purpureocillium, a new genus for the medically important Paecilomyces lilacinus. FEMS Microbiol Lett 321:141–149

    Article  CAS  PubMed  Google Scholar 

  • Lübeck M, Poulsen SK, Lübeck PS, Jensen DF, Thrane U (2000) Identification of Trichoderma strains from building materials by ITS1 ribotyping, UP-PCR fingerprinting and UP-PCR cross hybridization. FEMS Microbiol Lett 185:129–134

    Article  PubMed  Google Scholar 

  • Macalady LJ, Lyon E-H, Koffman B, Albertson LK, Meyer K, Galdenzi S, Mariani S (2006) Dominant microbial population in limestone-corroding stream biofilms, Frasassi cave system, Italy. Appl Environ Microb 72(8):5596–5609

    Article  CAS  Google Scholar 

  • Macalady JL, Jones DS, Lyon EH (2007) Extremely acidic, pendulous cave wall biofilms from the Frasassi cave system, Italy. Environ Microbiol 9:1402–1414

    Article  CAS  PubMed  Google Scholar 

  • Man B, Wang H, Xiang X, Wang R, Yun Y, Gong L (2015) Phylogenetic diversity of culturable fungi in the Heshang Cave, central China. Front Microbiol 6:1–11

    Article  Google Scholar 

  • Maran AGD, Milne LJR, Lamb D (1985) Frontal sinusitis caused by Myriodontium keratinophilum. Brit Med J 290:207

    Article  CAS  Google Scholar 

  • Mattison RG, Abbiati M, Dando PR, Fitzsimons MF, Pratt SM, Southward AJ, Southward EC (1998) Chemoautotrophic microbial mats in submarine caves with hydrothermal sulphidic springs at Cape Palinuro, Italy. Microbial Ecol 35(1):58–71

    Article  CAS  Google Scholar 

  • Meisinger DB, Zimmermann J, Ludwig W, Schleifer KH, Wanner G, Schmid M, Bennett PC, Engel AS, Lee NM (2007) In situ detection of novel Acidobacteria in microbial mats from a chemolithoautotrophically based cave ecosystem (Lower Kane Cave, WY, USA). Environ Microbiol 9:1523–1534

    Article  CAS  PubMed  Google Scholar 

  • Muschiol D, Giere O, Traunspurger W (2015) Population dynamics of a cavernicolous nematode community in a chemoautotrophic groundwater system. Limnol Oceanogr 60:127–135

    Article  Google Scholar 

  • Nováková A, Hubka V, Saiz-Jimenez C, Kolarik M (2012a) Aspergillus baeticus sp. nov. and Aspergillus thesauricus sp. nov.: two species in section Usti originating from Spanish caves. Int J Syst Evol Microbiol 62:2778–2785

    Article  PubMed  Google Scholar 

  • Nováková A, Hubka V, Saiz-Jimenez C (2012b) Human effect on microfungal community in show caves. In: Kováč Ľ. et al. (eds.) 21st International Conference on Subterranean Biology - Abstract Book, Košice, 2–7 September 2012, Košice, p 79

  • Nováková A, Sedlák P, Kubátová A, Tomšovský M (2015) Underground spaces as neglected niche for occurrence of Heterobasidion annosum complex. Forest Pathol 45:373–378

    Article  Google Scholar 

  • Por FD (2007) Ophel: a groundwater biome based on chemoautotrophic resources. The global significance of the Ayyalon Cave finds. Israel Hydrobiologia 592(1):1–10

    Article  CAS  Google Scholar 

  • Por FD, Dimentman C, Frumkin A, Naaman I (2013) Animal life in the chemoautotrophic ecosystem of the hypogenic groundwater cave of Ayyalon (Israel): a summing up. Nat Sci 5(4A):7–13

    Google Scholar 

  • Porter ML, Engel AS (2008) Diversity of uncultured Epsilonproteobacteria from terrestrial sulfidic caves and springs. Appl Environ Microbiol 74:4973–4977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porter ML, Engel AS, Kinkle B, Kane TC (2009) Productivity-diversity relationships from chemolithoautotrophically based sulfidic karst systems. Int J Speleol 38:27–40

    Article  Google Scholar 

  • Řepová A (1986) The occurrence of microscopic fungi in air of the building of the Czechoslovak Academy of Sciences in České Budějovice. Česká Mykol 40:19–29 (in Czech)

    Google Scholar 

  • Sarbu SM (2000) Movile Cave: a chemoautotrophically based ground-water ecosystem. In: Wilken H et al (eds) Subterranean ecosystems. Elsevier, Amsterdam, pp 319–343

    Google Scholar 

  • Sarbu SM, Kane TC (1995) A subterranean chemoautotrophically based ecosystem. Natl Speleol Soc Bull 57:91–98

    Google Scholar 

  • Sarbu SM, Lascu C (1997) Condensation corrosion in Movile Cave, Romania. J Cave Karst Stud 59:99–102

    CAS  Google Scholar 

  • Sarbu SM, Kinkle BK, Vlasceanu L, Kane TC, Popa R (1994) Microbiological characterization of a sulfide-rich groundwater ecosystem. Geomicrobiol J 12:175–182

    Article  Google Scholar 

  • Sarbu SM, Kane TC, Kinkle BK (1996) A chemoautotrophically based cave ecosystem. Science 272:1953–1955

    Article  CAS  PubMed  Google Scholar 

  • Schroers H-J (2001) A monograph of Bionectria (Ascomycota, Hypocreales, Bionectriaceae) and its Clonostachys anamorphs. Stud Mycol 46:1–206

    Google Scholar 

  • Simmons EG (2007) Alternaria. An identification manual. CBS Fungal Biodiversity Centre, Utrecht

  • Stief P, Fuchs-Ocklenburg S, Kamp A, Cathrine-Sumathi M, Houbraken J, Boekhout T, de Beer D, Stoeck T (2014) Dissimilatory nitrate neduction by Aspergillus terreus isolated from the seasonal oxygen minimum zone in the Arabian Sea. BMC Microbiol 14:35–44

    Article  PubMed  PubMed Central  Google Scholar 

  • Takasaki K, Shoun H, Nakamura A, Hoshino T, Takaya N (2004) Unusual transcription regulation of the niaD gene under anaerobic conditions supporting fungal ammonia fermentation. Biosci Biotechnol Biochem 68:978–980

    Article  CAS  PubMed  Google Scholar 

  • Tănasă M (2011) Stratigraphic and structural considerations of south Dobrogea. Geo-Eco-Marina 17(suppl):184

    Google Scholar 

  • Taylor ELS, Stoianoff MAR, Ferreira RL (2013) Mycological study for a management plan of a neotropical show cave (Brazil). Int J Speleol 42(3):267–277

    Article  Google Scholar 

  • Taylor ELS, Ferreira RL, Cardoso PG, Stoianoff MAR (2014) Cave entrance dependent spore dispersion of filamentous fungi isolated from various sediments of iron ore cave in Brazil: a colloquy on human threats while caving. Ambient Science 1(1):16–28

    Article  Google Scholar 

  • Vandervolf KJ, Maloch D, McAlpine DF, Forbes GJ (2013) A world review of fungi, yeasts, and slime molds in caves. Int J Speleol 42(1):77–96

    Article  Google Scholar 

  • Vlasceanu L, Popa R, Kinkle BK (1997) Characterization of Thiobacillus thioparus LV43 and its distribution in a chemoautotrophically based groundwater ecosystem. Appl Environ Microb 63:3123–3127

    CAS  Google Scholar 

  • Wanner H-U, Verhoeff A, Colombi A, Flanigan B, Gravesen S, Mouilleseaux A, Nevalainen A, Papadakis J, Seidel K (1993) Indoor air quality & its impact on man: Report No. 12: biological particles in indoor environments. ECSC-EEC-EAEC, Brussels-Luxembourg, p 81

  • Wells JM, Uota M (1969) Germination and growth of five fungi in low-oxygen and high-carbon dioxide atmospheres. Phytopathology 60:50–53

    Article  Google Scholar 

  • Wischer D, Kumaresan D, Johnston A, El Khawand M, Stephenson J, Hillebrand-Voiculescu AM, Chen Y, Murrel JC (2015) Bacterial metabolism of methylated amines and identification of novel methylotrophs in Movile Cave. ISME J 9:195–206

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Ministry of Education, Youth, and Sports of the Czech Republic and by the project “BIOCEV—Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University” (CZ.1.05/1.1.00/02.0109) from the European Regional Development Fund. Molecular genetic analyses were supported by the projects of the Charles University Grant Agency (GAUK 1130214). We thank the Group for Underwater and Speleological Exploration (GESS), custodian of Movile Cave, for supporting this project by permitting the access into the cave and for allowing us to use GESS Research Station in Mangalia; special thanks to Vlad Voiculescu and Mihai Baciu (both GESS members) for their technical assistance during the sampling activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alena Nováková.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nováková, A., Hubka, V., Valinová, Š. et al. Cultivable microscopic fungi from an underground chemosynthesis-based ecosystem: a preliminary study. Folia Microbiol 63, 43–55 (2018). https://doi.org/10.1007/s12223-017-0527-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-017-0527-6

Navigation