Skip to main content
Log in

Weighted boundedness of multilinear maximal function using Dirac deltas

  • Published:
Rendiconti del Circolo Matematico di Palermo Series 2 Aims and scope Submit manuscript

Abstract

In this article we extend a method of Miguel de Guzmán involving boundedness properties of maximal functions using Dirac deltas to multilinear setting. This method involves estimating maximal functions over finite linear combination of Dirac deltas. As an application, we obtain end-point weighted boundedness of the multilinear Hardy–Littlewood fractional maximal function with respect to multilinear weights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldaz, J.M.: Remarks on the Hardy–Littlewood maximal function. Proc. R. Soc. Edinb. 128 A, 325–328 (1998)

    MathSciNet  MATH  Google Scholar 

  2. Carlsson, H.: A new proof of the Hardy–Littlewod maximal theorem. Bull. Lond. Math. Soc. 16, 595–596 (1994)

    Article  Google Scholar 

  3. Duoandikoetxea, J.: Fourier Analysis. Translated and revised from the 1995 Spanish original by David Cruz–Uribe. Graduate Studies in Mathematics. 29 American Mathematical Society, Providence (2001)

  4. de Guzmán, M.: Real Variable Methods in Fourier Analysis, Vol. 46. North-Holland Mathematics Studies, Amsterdam (1981)

  5. Grafakos, L., Montgomery-Smith, S.: Best constants for uncentered maximal functions. Bull. Lond. Math. Soc. 29, 60–64 (1997)

    Article  Google Scholar 

  6. Lacey, M.T.: The bilinear maximal functions map into \(L^p\) for \(2/3<p\le 1\). Ann. Math. (2) 151(1), 35–57 (2000)

    Article  MathSciNet  Google Scholar 

  7. Lacey, M.T., Thiele, C.: \(L^p\) estimates on the bilinear Hilbert transform for \(2<p<\infty \). Ann. Math. (2) 146(3), 693–724 (1997)

    Article  MathSciNet  Google Scholar 

  8. Lacey, M.T., Thiele, C.: On Calderón’s conjecture. Ann. Math. (2) 149(2), 475–496 (1999)

    Article  MathSciNet  Google Scholar 

  9. Lerner, A.K., Nazarov, F.: Intuitive dyadic calculus: the basics. Expo. Math. (to appear) arXiv:1508.05639

  10. Lerner, A.K., Ombrosi, S., Perez, C., Torres, R.H., Trujillo-Gonzalez, R.: New maximal functions and multiple weights for the multilinear Calderon–Zygmund theory. Adv. Math. 220, 1222–1264 (2009)

    Article  MathSciNet  Google Scholar 

  11. Melas, A.D.: The best constant for the centered Hardy–Littlewood maximal inequality. Ann. Math. (2) 157(2), 647–688 (2003)

    Article  MathSciNet  Google Scholar 

  12. Menarguez, M.T., Soria, F.: Weak type \((1,1)\) inequalities of maximal covolution operators. Rend. Circ. Mat. Palermo 41, 342–352 (1992)

    Article  MathSciNet  Google Scholar 

  13. Moen, K.: Weighted inequalities for multilinear fractional integral operators. Collect. Math. 60(2), 213–238 (2009)

    Article  MathSciNet  Google Scholar 

  14. Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165, 207–226 (1972)

    Article  MathSciNet  Google Scholar 

  15. Muckenhoupt, B., Wheeden, R.L.: Weighted norm inequalities for singular and fractional integrals. Trans. Am. Math. Soc. 161, 249–258 (1971)

    Article  MathSciNet  Google Scholar 

  16. Sawyer, E., Wheeden, R.L.: Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces. Am. J. Math. 114(4), 813–874 (1992)

    Article  MathSciNet  Google Scholar 

  17. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30. Princeton University Press, Princeton (1970)

  18. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, With the assistance of Timothy S. Murphy. Princeton Mathematical Series, 43. Monographs in Harmonic Analysis, III. Princeton University Press, Princeton (1993)

  19. Termini, D., Vitanza, C.: Weighted estimates for the Hardy–Littlewood maximal operator and Dirac deltas. Bull. Lond. Math. Soc. 22, 367–374 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referee for his/her valuable suggestions that helped to improve the article. Also, the first author expresses his sincere gratitude to his thesis supervisor Prof. Parasar Mohanty for many fruitful discussions. Funding was provided by Ministry of Human Resource Development (Grant No. MHRD Gate-2013). The third author thanks Council of Scientific and Industrial Research for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Ghosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, A., Shrivastava, S. & Shuin, K. Weighted boundedness of multilinear maximal function using Dirac deltas. Rend. Circ. Mat. Palermo, II. Ser 69, 273–285 (2020). https://doi.org/10.1007/s12215-019-00401-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12215-019-00401-8

Keywords

Mathematics Subject Classification

Navigation