Skip to main content

Advertisement

Log in

Treatment outcome of children with acute lymphoblastic leukemia: the Tokyo Children’s Cancer Study Group (TCCSG) Study L04-16

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

The survival rate of children with acute lymphoblastic leukemia (ALL) has increased to approximately 90% after substantial progress in risk-oriented treatment strategies. Between 2005 and 2013, the Tokyo Children’s Cancer Study Group (TCCSG) conducted a risk-oriented, non-randomized study, L04-16. The principal aim of this study was to assemble background characteristics and treatment outcomes, and gather genetic information on leukemic cells under central diagnosis. This report outlines the background characteristics and treatment outcomes of 1033 children with ALL treated according to a TCCSG platform. The 5-year event-free and overall survival (OS) rates for all children were 78.1 ± 1.3 and 89.6 ± 1.0%, respectively. The OS rate was significantly higher in children with B-cell precursor (BCP)-ALL (91.9 ± 1.0%, n = 916) than in those with T-ALL (71.9 ± 4.3%, n = 117, p < 0.001). In univariate analysis for BCP-ALL, children aged 1–6 years (5y-OS: 94.2 ± 1.0%), with an initial white blood cell count of < 20,000/μL (94.0 ± 1.0%), high hyperdiploidy (95.4 ± 1.6%), ETV6-RUNX1 (97.4 ± 1.2%) or TCF3-PBX1 (96.9 ± 2.1%), and “Day8NoBlasts” (96.4 ± 1.1%) had the best outcomes. Genetic investigation revealed two novel fusion genes within this cohort: ETV6-ZNF385A and ZNF362-TCF4. Our study highlighted the clinical aspects of genomic features of ALL in Japanese children. We provide fundamental information for the further molecular investigation of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Pui CH, Carroll WL, Meshinchi S, Arceci RJ. Biology, risk stratification, and therapy of pediatric acute leukemias: an update. J Clin Oncol. 2011;29:551–65.

    Article  PubMed  Google Scholar 

  2. Pui CH, Mullighan CG, Evans WE, Relling MV. Pediatric acute lymphoblastic leukemia: where are we going and how do we get there? Blood. 2012;120:1165–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Hunger SP, Mullighan CG. Acute lymphoblastic leukemia in children. N Engl J Med. 2015;373:1541–52.

    Article  PubMed  CAS  Google Scholar 

  4. Inaba H, Greaves M, Mullighan CG. Acute lymphoblastic leukaemia. Lancet. 2013;381:1943–55.

    Article  PubMed  Google Scholar 

  5. Locatelli F, Schrappe M, Bernardo ME, Rutella S. How I treat relapsed childhood acute lymphoblastic leukemia. Blood. 2012;120:2807–16.

    Article  PubMed  CAS  Google Scholar 

  6. Bhojwani D, Pui CH. Relapsed childhood acute lymphoblastic leukaemia. Lancet Oncol. 2013;14:e205–17.

    Article  PubMed  Google Scholar 

  7. Manabe A, Ohara A, Hasegawa D, Koh K, Saito T, Kiyokawa N, et al. Tokyo Children’s Cancer Study Group. Significance of the complete clearance of peripheral blasts after 7 days of prednisolone treatment in children with acute lymphoblastic leukemia: the Tokyo Children’s Cancer Study Group Study L99-15. Haematologica. 2008;93:1155–60.

    Article  PubMed  CAS  Google Scholar 

  8. Hasegawa D, Manabe A, Ohara A, Kikuchi A, Koh K, Kiyokawa N, et al. Tokyo Children’s Cancer Study Group. The utility of performing the initial lumbar puncture on day 8 in remission induction therapy for childhood acute lymphoblastic leukemia: TCCSG L99-15 study. Pediatr Blood Cancer. 2012;58:23–30.

    Article  PubMed  Google Scholar 

  9. Kato M, Koh K, Manabe A, Saito T, Hasegawa D, Isoyama K, et al. No impact of high-dose cytarabine and asparaginase as early intensification with intermediate-risk paediatric acute lymphoblastic leukaemia: results of randomized trial TCCSG study L99-15. Br J Haematol. 2014;164:376–83.

    Article  PubMed  CAS  Google Scholar 

  10. Koh K, Tomizawa D, Saito AM, Watanabe T, Miyamura T, Hirayama M, et al. Early use of allogeneic hematopoietic stem cell transplantation for infants with MLL gene-rearrangement-positive acute lymphoblastic leukemia. Leukemia. 2015;29:290–6.

    Article  PubMed  CAS  Google Scholar 

  11. Manabe A, Kawasaki H, Shimada H, Kato I, Kodama Y, Sato A, et al. Imatinib use immediately before stem cell transplantation in children with Philadelphia chromosome-positive acute lymphoblastic leukemia: results from Japanese Pediatric Leukemia/Lymphoma Study Group (JPLSG) Study Ph(+) ALL04. Cancer Med. 2015;4:682–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Tsurusawa M, Mori T, Kikuchi A, Mitsui T, Sunami S, Kobayashi R, et al. Lymphoma committee of Japanese Pediatric Leukemia/Lymphoma Study Group. Improved treatment results of children with B-cell non-Hodgkin lymphoma: a report from the Japanese Pediatric Leukemia/Lymphoma Study Group B-NHL03 study. Pediatr Blood Cancer. 2014;61:1215–21.

    Article  PubMed  CAS  Google Scholar 

  13. Gocho Y, Kiyokawa N, Ichikawa H, Nakabayashi K, Osumi T, Ishibashi T, et al. A novel recurrent EP300-ZNF384 gene fusion in B-cell precursor acute lymphoblastic leukemia. Leukemia. 2015;29:2445–8.

    Article  PubMed  CAS  Google Scholar 

  14. Hirabayashi S, Ohki K, Nakabayashi K, Ichikawa H, Momozawa Y, Okamura K, et al. Tokyo Children’s Cancer Study Group (TCCSG). ZNF384-related fusion genes define a subgroup of childhood B-cell precursor acute lymphoblastic leukemia with a characteristic immunotype. Haematologica. 2017;102:118–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Imamura T, Kiyokawa N, Kato M, Imai C, Okamoto Y, Yano M, et al. Characterization of pediatric Philadelphia-negative B-cell precursor acute lymphoblastic leukemia with kinase fusions in Japan. Blood Cancer J. 2016;6:e419.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Möricke A, Reiter A, Zimmermann M, Gadner H, Stanulla M, Dördelmann M, et al. German-Austrian-Swiss ALL-BFM Study Group. Risk-adjusted therapy of acute lymphoblastic leukemia can decrease treatment burden and improve survival: treatment results of 2169 unselected pediatric and adolescent patients enrolled in the trial ALL-BFM 95. Blood. 2008;111:4477–89.

    Article  PubMed  CAS  Google Scholar 

  17. Smith M, Arthur D, Camitta B, Carroll AJ, Crist W, Gaynon P, et al. Uniform approach to risk classification and treatment assignment for children with acute lymphoblastic leukemia. J Clin Oncol. 1996;14:18–24.

    Article  PubMed  CAS  Google Scholar 

  18. Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48:452–8.

    Article  PubMed  CAS  Google Scholar 

  19. Kato M, Ishimaru S, Seki M, Yoshida K, Shiraishi Y, Chiba K, et al. Long-term outcome of 6-month maintenance chemotherapy for acute lymphoblastic leukemia in children. Leukemia. 2017;31:580–4.

    Article  PubMed  CAS  Google Scholar 

  20. Vora A, Andreano A, Pui CH, Hunger SP, Schrappe M, Möricke A, et al. J Clin Oncol. 2016;34:919–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Campana D, Pui CH. Minimal residual disease-guided therapy in childhood acute lymphoblastic leukemia. Blood. 2017;129:1913–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Conter V, Bartram CR, Valsecchi MG, Schrauder A, Panzer-Grümayer R, Möricke A, et al. Molecular response to treatment redefines all prognostic factors in children and adolescents with B-cell precursor acute lymphoblastic leukemia: results in 3184 patients of the AIEOP-BFM ALL 2000 study. Blood. 2010;115:3206–14.

    Article  PubMed  CAS  Google Scholar 

  23. Vora A, Goulden N, Mitchell C, Hancock J, Hough R, Rowntree C, et al. Augmented post-remission therapy for a minimal residual disease-defined high-risk subgroup of children and young people with clinical standard-risk and intermediate-risk acute lymphoblastic leukaemia (UKALL 2003): a randomised controlled trial. Lancet Oncol. 2014;15:809–18.

    Article  PubMed  Google Scholar 

  24. Pui CH, Pei D, Coustan-Smith E, Jeha S, Cheng C, Bowman WP, et al. Clinical utility of sequential minimal residual disease measurements in the context of risk-based therapy in childhood acute lymphoblastic leukaemia: a prospective study. Lancet Oncol. 2015;16:465–74.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Larsen EC, Devidas M, Chen S, Salzer WL, Raetz EA, Loh ML, et al. Dexamethasone and high-dose methotrexate improve outcome for children and young adults with high-risk B-acute lymphoblastic leukemia: a report from Children’s Oncology Group Study AALL0232. J Clin Oncol. 2016;34:2380–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Pieters R, de Groot-Kruseman H, Van der Velden V, Fiocco M, van den Berg H, de Bont E, et al. Successful therapy reduction and intensification for childhood acute lymphoblastic leukemia based on minimal residual disease monitoring: study ALL10 from the Dutch Childhood Oncology Group. J Clin Oncol. 2016;34:2591–601.

    Article  PubMed  Google Scholar 

  27. Wood BL, Winter SS, Dunsmore KP, Devidas M, Chen S, Asselin B, et al. T-lymphoblastic leukemia (T-ALL) shows excellent outcome, lack of significance of the early thymic precursor (ETP) immunophenotype, and validation of the prognostic value of end-induction minimal residual disease (MRD) in Children’s Oncology Group (COG) Study AALL0434. Blood. 2014;124:1 (abstract).

    Article  Google Scholar 

  28. Kobayashi K, Mitsui K, Ichikawa H, Nakabayashi K, Matsuoka M, Kojima Y, et al. ATF7IP as a novel PDGFRB fusion partner in acute lymphoblastic leukaemia in children. Br J Haematol. 2014;165:836–41.

    Article  PubMed  CAS  Google Scholar 

  29. Tanaka Y, Kato M, Hasegawa D, Urayama KY, Nakadate H, Kondoh K, et al. Susceptibility to 6-MP toxicity conferred by a NUDT15 variant in Japanese children with acute lymphoblastic leukaemia. Br J Haematol. 2015;171:109–15.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the participating institutes and physicians in the TCCSG. They would also like to thank Ms. Kaori Itagaki for preparing and refining the protocol data. This work was supported, in part, by grants from the Children’s Cancer Association of Japan and the Grant of the National Center for Child Health and Development (26-20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Takahashi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Dr. Atsushi Makimoto was affilated to Department of Pediatric Oncology, National Cancer Center Hospital, Tokyo, Japan (belonged till February 2013).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1536 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi, H., Kajiwara, R., Kato, M. et al. Treatment outcome of children with acute lymphoblastic leukemia: the Tokyo Children’s Cancer Study Group (TCCSG) Study L04-16. Int J Hematol 108, 98–108 (2018). https://doi.org/10.1007/s12185-018-2440-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-018-2440-4

Keywords

Navigation