Skip to main content

Advertisement

Log in

Evaluation and Management of Pyogenic and Tubercular Spine Infections

  • Modern Management of TB and Other Chronic Infections (S Gugale, section editor)
  • Published:
Current Reviews in Musculoskeletal Medicine Aims and scope Submit manuscript

Abstract

Purpose of Review

To review the most current diagnostic tools and treatment options for pyogenic and tubercular spine infection.

Recent Findings

Recent studies have focused on risk factors for failed nonoperative management in order to improve patient selection. Also, spine instrumentation and different grafting options have been safely utilized in the setting of an active infection without increasing the incidence of reoccurrence. However, the optimal surgical technique has yet to be established and instead should be patient specific.

Summary

Spine infections include a broad spectrum of disorders including discitis, vertebral osteomyelitis, and spinal epidural abscess. It is paramount to recognized spine infections early due to the potential catastrophic consequences of paralysis and sepsis. The management of spine infections continues to evolve as newer diagnostic tools and surgical techniques become available. Magnetic resonance imaging with contrast is the imaging study of choice and computed tomography-guided biopsies are crucial for guiding antibiotic selection. Antibiotics are the mainstay of treatment and surgery is indicated in patients with neurological deficits, sepsis, spinal instability, and those who have failed nonoperative treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Govender S. Spinal infections. J Bone Joint Surg Br. 2005;87(11):1454–8. https://doi.org/10.1302/0301-620X.87B11.16294.

    Article  CAS  PubMed  Google Scholar 

  2. Mylona E, Samarkos M, Kakalou E, Fanourgiakis P, Skoutelis A. Pyogenic vertebral osteomyelitis: a systematic review of clinical characteristics. Semin Arthritis Rheum. 2009;39(1):10–7. https://doi.org/10.1016/j.semarthrit.2008.03.002.

    Article  CAS  PubMed  Google Scholar 

  3. Graham SM, Fishlock A, Millner P, Sandoe J. The management gram-negative bacterial haematogenous vertebral osteomyelitis: a case series of diagnosis, treatment and therapeutic outcomes. Eur Spine J. 2013;22(8):1845–53. https://doi.org/10.1007/s00586-013-2750-4.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Berbari EF, Kanj SS, Kowalski TJ, Darouiche RO, Widmer AF, Schmitt SK, et al. Executive Summary: 2015 Infectious Diseases Society of America (IDSA) Clinical practice guidelines for the diagnosis and treatment of native vertebral osteomyelitis in adults: Table 1. Clin Infect Dis. 2015;61(6):859–63. https://doi.org/10.1093/cid/civ633.

    Article  PubMed  Google Scholar 

  5. Duarte RM, Vaccaro AR. Spinal infection: state of the art and management algorithm. Eur Spine J. 2013;22(12):2787–99. https://doi.org/10.1007/s00586-013-2850-1.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wu M, Su J, Yan F, Cai L, Deng Z. Skipped multifocal extensive spinal tuberculosis involving the whole spine: a case report and literature review. Medicine. 2018;97(3):e9692. https://doi.org/10.1097/MD.0000000000009692.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rajasekaran S, Khandelwal G. Drug therapy in spinal tuberculosis. Eur Spine J. 2012;22(S4):587–93. https://doi.org/10.1007/s00586-012-2337-5.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Colmenero JD, Jiménez-Mejías ME, Sánchez-Lora FJ, Reguera JM, Palomino-Nicás J, Martos F, et al. Pyogenic, tuberculous, and brucellar vertebral osteomyelitis: a descriptive and comparative study of 219 cases. Ann Rheum Dis. 1997;56(12):709–15.

    Article  CAS  Google Scholar 

  9. Jean M, Irisson J-O, Gras G, Bouchand F, Simo D, Duran C, et al. Diagnostic delay of pyogenic vertebral osteomyelitis and its associated factors. Scand J Rheumatol. 2017;46(1):64–8. https://doi.org/10.3109/03009742.2016.1158314.

    Article  CAS  PubMed  Google Scholar 

  10. Davis DP, Wold RM, Patel RJ, Tran AJ, Tokhi RN, Chan TC, et al. The clinical presentation and impact of diagnostic delays on emergency department patients with spinal epidural abscess. J Emerg Med. 2004;26(3):285–91. https://doi.org/10.1016/j.jemermed.2003.11.013.

    Article  PubMed  Google Scholar 

  11. Jain AK, Dhammi IK. Tuberculosis of the spine: a review. Clin Orthop Relat Res. 2007;460:39–49. https://doi.org/10.1097/BLO.0b013e318065b7c3.

    Article  PubMed  Google Scholar 

  12. Digby JM, Kersley JB. Pyogenic non-tuberculous spinal infection: an analysis of thirty cases. J Bone Joint Surg Br. 1979;61(1):47–55.

    Article  CAS  Google Scholar 

  13. Kapeller P, Fazekas F, Krametter D, Koch M, Roob G, Schmidt R, et al. Pyogenic infectious spondylitis: clinical, laboratory and MRI features. Eur Neurol. 1997;38(2):94–8. https://doi.org/10.1159/000113167.

    Article  CAS  PubMed  Google Scholar 

  14. Yoon SH, Chung SK, Kim K-J, Kim H-J, Jin YJ, Kim HB. Pyogenic vertebral osteomyelitis: identification of microorganism and laboratory markers used to predict clinical outcome. Eur Spine J. 2010;19(4):575–82. https://doi.org/10.1007/s00586-009-1216-1.

    Article  PubMed  Google Scholar 

  15. Patel AR, Alton TB, Bransford RJ, Lee MJ, Bellabarba CB, Chapman JR. Spinal epidural abscesses: risk factors, medical versus surgical management, a retrospective review of 128 cases. Spine J. 2014;14(2):326–30. https://doi.org/10.1016/j.spinee.2013.10.046.

    Article  PubMed  Google Scholar 

  16. Ju KL, Kim SD, Melikian R, Bono CM, Harris MB. Predicting patients with concurrent noncontiguous spinal epidural abscess lesions. Spine J. 2015;15(1):95–101. https://doi.org/10.1016/j.spinee.2014.06.008.

    Article  PubMed  Google Scholar 

  17. Harada Y, Tokuda O, Matsunaga N. Magnetic resonance imaging characteristics of tuberculous spondylitis vs. pyogenic spondylitis. Clin Imaging. 2008;32(4):303–9. https://doi.org/10.1016/j.clinimag.2007.03.015.

    Article  PubMed  Google Scholar 

  18. Anley CM, Brandt AD, Dunn R. Magnetic resonance imaging findings in spinal tuberculosis: Comparison of HIV positive and negative patients. Indian J Orthop. 2012;46(2):186–90. https://doi.org/10.4103/0019-5413.93688.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pupaibool J, Vasoo S, Erwin PJ, Murad MH, Berbari EF. The utility of image-guided percutaneous needle aspiration biopsy for the diagnosis of spontaneous vertebral osteomyelitis: a systematic review and meta-analysis. Spine J. 2015;15(1):122–31. https://doi.org/10.1016/j.spinee.2014.07.003.

    Article  PubMed  Google Scholar 

  20. Chew FS, Kline MJ. Diagnostic yield of CT-guided percutaneous aspiration procedures in suspected spontaneous infectious diskitis. Radiology. 2001;218(1):211–4. https://doi.org/10.1148/radiology.218.1.r01ja06211.

    Article  CAS  PubMed  Google Scholar 

  21. Kim C-J, Kang S-J, Choe PG, Park WB, Jang H-C, Jung S-I, et al. Which tissues are best for microbiological diagnosis in patients with pyogenic vertebral osteomyelitis undergoing needle biopsy? Clin Microbiol Infect. 2015;21(10):931–5. https://doi.org/10.1016/j.cmi.2015.06.021.

    Article  PubMed  Google Scholar 

  22. Kim C-J, Song K-H, Park WB, Kim ES, Park SW, Kim H-B, et al. Microbiologically and clinically diagnosed vertebral osteomyelitis: impact of prior antibiotic exposure. Antimicrob Agents Chemother. 2012;56(4):2122–4. https://doi.org/10.1128/AAC.05953-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang Y-C, Wong C-B, Wang I-C, Fu T-S, Chen L-H, Chen W-J. Exposure of prebiopsy antibiotics influence bacteriological diagnosis and clinical outcomes in patients with infectious spondylitis. Medicine. 2016;95(15):e3343. https://doi.org/10.1097/MD.0000000000003343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. de Lucas EM, González Mandly A, Gutiérrez A, Pellón R, Martín-Cuesta L, Izquierdo J, et al. CT-guided fine-needle aspiration in vertebral osteomyelitis: true usefulness of a common practice. Clin Rheumatol. 2009;28(3):315–20. https://doi.org/10.1007/s10067-008-1051-5.

    Article  PubMed  Google Scholar 

  25. Dietze DD, Fessler RG, Patrick Jacob R. Primary reconstruction for spinal infections. Neurosurg Focus. 1997;2(4):E2. https://doi.org/10.3171/foc.1997.2.4.2.

    Article  Google Scholar 

  26. Madhavan K, Vanni S, Williams SK. Direct lateral retroperitoneal approach for the surgical treatment of lumbar discitis and osteomyelitis. Neurosurg Focus. 2014;37(2):E5. https://doi.org/10.3171/2014.6.FOCUS14150.

    Article  PubMed  Google Scholar 

  27. Turel MK, Kerolus M, Deutsch H. The role of minimally invasive spine surgery in the management of pyogenic spinal discitis. J Craniovertebr Junction Spine. 2017;8(1):39–43. https://doi.org/10.4103/0974-8237.199873.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Blizzard DJ, Hills CP, Isaacs RE, Brown CR. Extreme lateral interbody fusion with posterior instrumentation for spondylodiscitis. J Clin Neurosci. 2015;22(11):1758–61. https://doi.org/10.1016/j.jocn.2015.05.021.

    Article  PubMed  Google Scholar 

  29. Ghobrial GM, Franco D, Theofanis T, Margiotta PJ, Andrews E, Wilson JR, et al. Cervical Spondylodiscitis: Presentation, Timing, and Surgical Management in 59 Patients. World Neurosurg. 2017;103:664–70. https://doi.org/10.1016/j.wneu.2017.04.119.

    Article  PubMed  Google Scholar 

  30. Ghobrial GM, Viereck MJ, Margiotta PJ, Beygi S, Maulucci CM, Heller JE, et al. Surgical management in 40 consecutive patients with cervical spinal epidural abscesses: shifting toward circumferential treatment. Spine. 2015;40(17):E949–53. https://doi.org/10.1097/BRS.0000000000000942.

    Article  PubMed  Google Scholar 

  31. Shousha M, Heyde C, Boehm H. Cervical spondylodiscitis: change in clinical picture and operative management during the last two decades. A series of 50 patients and review of literature. Eur Spine J. 2015;24(3):571–6. https://doi.org/10.1007/s00586-014-3672-5.

    Article  CAS  PubMed  Google Scholar 

  32. Bydon M, De la Garza-Ramos R, Macki M, Naumann M, Sciubba DM, Wolinsky J-P, et al. Spinal instrumentation in patients with primary spinal infections does not lead to greater recurrent infection rates: an analysis of 118 cases. World Neurosurg. 2014;82(6):e807–14. https://doi.org/10.1016/j.wneu.2014.06.014.

    Article  PubMed  Google Scholar 

  33. • Carragee E, Iezza A. Does Acute placement of instrumentation in the treatment of vertebral osteomyelitis predispose to recurrent infection: long-term follow-up in immune-suppressed patients. Spine. 2008;33(19):2089–93. https://doi.org/10.1097/BRS.0b013e3181839b9c 32 consecutive immune compromised patients with pyogenic vertebral osteomyelitis who underwent single-stage debridement and acute placement of spinal instrumentation were prospectively observed for reoccurrence of infection for up to 10 years. A total of 22 patients had full follow-up without reoccurrence of infection. Only one patient had a reoccurrence that was successfully treated with debridement and retention of instrumentation. Four patients underwent removal of instrumentation due to suspected nonunion or infection but none had confirmed histological evidence of infection. Single-stage debridement and spinal instrumentation for PVO has a low risk of long-term recurrence.

    Article  PubMed  Google Scholar 

  34. Kim HW, Ryu J-I, Bak KH. The safety and efficacy of cadaveric allografts and titanium cage as a fusion substitutes in pyogenic osteomyelitis. J Korean Neurosurg Soc. 2011;50(4):348–56. https://doi.org/10.3340/jkns.2011.50.4.348.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lu DC, Wang V, Chou D. The use of allograft or autograft and expandable titanium cages for the treatment of vertebral osteomyelitis. Neurosurgery. 2009;64(1):122–30. https://doi.org/10.1227/01.neu.0000336332.11957.0b.

    Article  PubMed  Google Scholar 

  36. Robinson Y, Tschoeke SK, Kayser R, Boehm H, Heyde CE. Reconstruction of large defects in vertebral osteomyelitis with expandable titanium cages. Int Orthop. 2009;33(3):745–9. https://doi.org/10.1007/s00264-008-0567-2.

    Article  PubMed  Google Scholar 

  37. Kuklo TR, Potter BK, Bell RS, Moquin RR, Rosner MK. Single-stage treatment of pyogenic spinal infection with titanium mesh cages. J Spinal Disord Tech. 2006;19(5):376–82. https://doi.org/10.1097/01.bsd.0000203945.03922.f6.

    Article  PubMed  Google Scholar 

  38. Sundararaj GD, Babu N, Amritanand R, Venkatesh K, Nithyananth M, Cherian VM, et al. Treatment of haematogenous pyogenic vertebral osteomyelitis by single-stage anterior debridement, grafting of the defect and posterior instrumentation. J Bone Joint Surg (Br). 2007;89(9):1201–5. https://doi.org/10.1302/0301-620X.89B9.18776.

    Article  CAS  Google Scholar 

  39. Shetty AP, Aiyer SN, Kanna RM, Maheswaran A, Rajasekaran S. Pyogenic lumbar spondylodiscitis treated with transforaminal lumbar interbody fusion: safety and outcomes. Int Orthop. 2016;40(6):1163–70. https://doi.org/10.1007/s00264-015-3063-5.

    Article  PubMed  Google Scholar 

  40. Wang X, Tao H, Zhu Y, Lu X, Hu X. Management of postoperative spondylodiscitis with and without internal fixation. Turk Neurosurg. 2015;25(4):513–8. https://doi.org/10.5137/1019-5149.JTN.9008-13.1.

    Article  PubMed  Google Scholar 

  41. Santhanam R, Lakshmi K. A Retrospective Analysis of the Management of Postoperative Discitis: A Single Institutional Experience. Asian Spine J. 2015;9(4):559–64. https://doi.org/10.4184/asj.2015.9.4.559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kucuk A, Karademir M, Tumturk A, Ulutabanca H, Ercal BD, Senol S, et al. Surgical strategies for spondylodiscitis due to lumbar disc surgery. Turk Neurosurg. 2017;27(1):95–8. https://doi.org/10.5137/1019-5149.JTN.14234-15.1.

    Article  PubMed  Google Scholar 

  43. Arko L 4th, Quach E, Nguyen V, Chang D, Sukul V, Kim B-S. Medical and surgical management of spinal epidural abscess: a systematic review. Neurosurg Focus. 2014;37(2):E4. https://doi.org/10.3171/2014.6.FOCUS14127.

    Article  PubMed  Google Scholar 

  44. Alton TB, Patel AR, Bransford RJ, Bellabarba C, Lee MJ, Chapman JR. Is there a difference in neurologic outcome in medical versus early operative management of cervical epidural abscesses? Spine J. 2015;15(1):10–7. https://doi.org/10.1016/j.spinee.2014.06.010.

    Article  PubMed  Google Scholar 

  45. Tuchman A, Pham M, Hsieh PC. The indications and timing for operative management of spinal epidural abscess: literature review and treatment algorithm. Neurosurg Focus. 2014;37(2):E8. https://doi.org/10.3171/2014.6.FOCUS14261.

    Article  PubMed  Google Scholar 

  46. • Shah AA, Ogink PT, Nelson SB, Harris MB, Schwab JH. Nonoperative management of spinal epidural abscess: development of a predictive algorithm for failure. J Bone Joint Surg Am. 2018;100(7):546–55. https://doi.org/10.2106/JBJS.17.00629 A total of 367 patients who underwent nonoperative treatment for spinal epidural abscess were retrospectively reviewed for risk factors of failed medical management. Six independent predictors of failed medical management were identified: motor deficit at presentation, pathological or compression fractures, active malignancy, diabetes mellitus, sensory changes, and dorsal location of abscess. The nomogram created can be used as a tool to weigh the risks and benefits of nonoperative and operative management.

    Article  PubMed  Google Scholar 

  47. • Ghobrial GM, Beygi S, Viereck MJ, Maulucci CM, Sharan A, Heller J, et al. Timing in the surgical evacuation of spinal epidural abscesses. Neurosurg Focus. 2014;37(2):E1. https://doi.org/10.3171/2014.6.FOCUS14120 Retrospective review of 62 consecutive cases of cervical spine epidural abscess with the ASIA motor score (0-100) as the primary outcome measure. Early surgery (average time to OR was 24 h) for cervical spine epidural abscess resulted in improved motor scores, while delayed surgery (average time to OR was 7 days) due to failed medical therapy resulted in worse motor scores. Early surgical decompression of cervical spinal epidural abscess is recommended.

    Article  PubMed  Google Scholar 

  48. Rigamonti D, Liem L, Sampath P, Knoller N, Namaguchi Y, Schreibman DL, et al. Spinal epidural abscess: contemporary trends in etiology, evaluation, and management. Surg Neurol. 1999;52(2):189–96 discussion 197.

    Article  CAS  Google Scholar 

  49. Zimmerer SME, Conen A, Müller AA, Sailer M, Taub E, Flückiger U, et al. Spinal epidural abscess: aetiology, predisponent factors and clinical outcomes in a 4-year prospective study. Eur Spine J. 2011;20(12):2228–34. https://doi.org/10.1007/s00586-011-1838-y.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yang H, Song F, Zhang L, Li N, Zhang X, Wang Y. Management of spine tuberculosis with chemotherapy and percutaneous pedicle screws in adjacent vertebrae: a retrospective study of 34 cases. Spine. 2016;41(23):E1415–20. https://doi.org/10.1097/BRS.0000000000001858.

    Article  PubMed  Google Scholar 

  51. Chandra SP, Singh A, Goyal N, Laythalling RK, Singh M, Kale SS, et al. Analysis of changing paradigms of management in 179 patients with spinal tuberculosis over a 12-year period and proposal of a new management algorithm. World Neurosurg. 2013;80(1-2):190–203. https://doi.org/10.1016/j.wneu.2012.12.019.

    Article  PubMed  Google Scholar 

  52. Sharma A, Chhabra HS, Chabra T, Mahajan R, Batra S, Sangondimath G. Demographics of tuberculosis of spine and factors affecting neurological improvement in patients suffering from tuberculosis of spine: a retrospective analysis of 312 cases. Spinal Cord. 2017;55(1):59–63. https://doi.org/10.1038/sc.2016.85.

    Article  CAS  PubMed  Google Scholar 

  53. •• Yao Y, Zhang H, Liu M, Liu H, Chu T, Tang Y, et al. Prognostic factors for recovery of patients after surgery for thoracic spinal tuberculosis. World Neurosurg. 2017;105:327–31. https://doi.org/10.1016/j.wneu.2017.05.167 Retrospective review of 237 patients with thoracic spine tuberculosis used the Japanese Orthopedic Association score to assess post-operative recovery. Shorter duration of symptoms (3 months or less), fewer vertebrae involved (2 or less), and the lack of paralysis upon presentation were predictors of positive outcomes following surgery.

    Article  PubMed  Google Scholar 

  54. Muheremu A, Ma Y, Ma Y, Ma J, Cheng J, Xie J. Halo-pelvic traction for severe kyphotic deformity secondary to spinal tuberculosis. Medicine. 2017;96(28):e7491. https://doi.org/10.1097/MD.0000000000007491.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Jin-tao Q, Yu-quan J, Guo-hua X, Yu T, Zi-tian W, Xiao-jian Y, et al. Clinical characteristics and neurologic recovery of patients with cervical spinal tuberculosis: should conservative treatment be preferred? A retrospective follow-up study of 115 cases. World Neurosurg. 2015;83(5):700–7. https://doi.org/10.1016/j.wneu.2015.01.015.

    Article  Google Scholar 

  56. Zhang P, Shen Y, Ding W-Y, Zhang W, Shang Z. The role of surgical timing in the treatment of thoracic and lumbar spinal tuberculosis. Arch Orthop Trauma Surg. 2014;134(2):167–72. https://doi.org/10.1007/s00402-013-1904-5.

    Article  PubMed  Google Scholar 

  57. Muheremu A, Niu X, Wu Z, Tian W. Study on anterior and posterior approaches for spinal tuberculosis: a meta-analysis. Eur J Orthop Surg Traumatol. 2015;25(Suppl 1):S69–76. https://doi.org/10.1007/s00590-014-1508-y.

    Article  PubMed  Google Scholar 

  58. •• Liu J, Wan L, Long X, Huang S, Dai M, Liu Z. Efficacy and Safety of Posterior Versus Combined Posterior and Anterior Approach for the Treatment of Spinal Tuberculosis: A Meta-Analysis. World Neurosurg. 2015;83(6):1157–65. https://doi.org/10.1016/j.wneu.2015.01.041 Meta-analysis of five controlled clinical trials involving 253 patients with spinal TB were analyzed. Posterior only approach was associated with decreased operative time, blood loss, length of stay, and rate of complications. However, there were no difference in correction of angle, loss of correction at final follow-up, time to fusion, and overall neurological improvement. The posterior-only approach has a similar efficacy and better safety profile than a combined-surgical approach for the treatment of spinal TB.

    Article  PubMed  Google Scholar 

  59. Li J, Li X-L, Zhou X-G, Zhou J, Dong J. Surgical treatment for spinal tuberculosis with bilateral paraspinal abscess or bilateral psoas abscess. J Spinal Disord Tech. 2014;27(8):E309–14. https://doi.org/10.1097/bsd.0000000000000120.

    Article  PubMed  Google Scholar 

  60. Wang B, Lv G, Liu W, Cheng I. Anterior radical debridement and reconstruction using titanium mesh cage for the surgical treatment of thoracic and thoracolumbar spinal tuberculosis: minimum five-year follow-up. Turk Neurosurg. 2011;21(4):575–81. https://doi.org/10.5137/1019-5149.JTN.4639-11.1.

  61. Yin XH, Liu ZK, He BR, Hao DJ. Single posterior surgical management for lumbosacral tuberculosis: titanium mesh versus iliac bone graft: a retrospective case-control study. Medicine. 2017;96(51):e9449. https://doi.org/10.1097/MD.0000000000009449.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Bhandari A, Garg RK, Malhotra HS, Verma R, Singh MK, Jain A, et al. Outcome assessment in conservatively managed patients with cervical spine tuberculosis. Spinal Cord. 2014;52(6):489–93. https://doi.org/10.1038/sc.2014.49.

    Article  CAS  PubMed  Google Scholar 

  63. He M, Xu H, Zhao J, Wang Z. Anterior debridement, decompression, bone grafting, and instrumentation for lower cervical spine tuberculosis. Spine J. 2014;14(4):619–27. https://doi.org/10.1016/j.spinee.2013.06.076.

    Article  PubMed  Google Scholar 

  64. Pan Z, Luo J, Yu L, Chen Y, Zhong J, Li Z, et al. Débridement and reconstruction improve postoperative sagittal alignment in kyphotic cervical spinal tuberculosis. Clin Orthop Relat Res. 2017;475(8):2084–91. https://doi.org/10.1007/s11999-017-5306-9.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Li L, Xu J, Ma Y, Tang D, Chen Y, Luo F, et al. Surgical strategy and management outcomes for adjacent multisegmental spinal tuberculosis: a retrospective study of forty-eight patients. Spine. 2014;39(1):E40–8. https://doi.org/10.1097/BRS.0000000000000053.

    Article  PubMed  Google Scholar 

  66. Zhang P, Peng W, Wang X, Luo C, Xu Z, Zeng H, et al. Minimum 5-year follow-up outcomes for single-stage transpedicular debridement, posterior instrumentation and fusion in the management of thoracic and thoracolumbar spinal tuberculosis in adults. Br J Neurosurg. 2016;30(6):666–71. https://doi.org/10.1080/02688697.2016.1206182.

    Article  PubMed  Google Scholar 

  67. Boachie-Adjei O, Papadopoulos EC, Pellisé F, Cunningham ME, Perez-Grueso FS, Gupta M, et al. Late treatment of tuberculosis-associated kyphosis: literature review and experience from a SRS-GOP site. Eur Spine J. 2013;22(Suppl 4):641–6. https://doi.org/10.1007/s00586-012-2338-4.

    Article  PubMed  Google Scholar 

  68. Suk S-I, Kim J-H, Kim W-J, Lee S-M, Chung E-R, Nah K-H. Posterior vertebral column resection for severe spinal deformities. Spine. 2002;27(21):2374–82. https://doi.org/10.1097/00007632-200211010-00012.

    Article  PubMed  Google Scholar 

  69. Liu C, Lin L, Wang W, Lv G, Deng Y. Long-term outcomes of vertebral column resection for kyphosis in patients with cured spinal tuberculosis: average 8-year follow-up. J Neurosurg Spine. 2016;24(5):777–85. https://doi.org/10.3171/2015.8.SPINE15534.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barrett S. Boody.

Ethics declarations

Conflict of Interest

Dr. Boody reports personal fees from Innovative Surgical Designs, outside the submitted work. The other authors declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Modern Management of TB and Other Chronic Infections

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boody, B.S., Tarazona, D.A. & Vaccaro, A.R. Evaluation and Management of Pyogenic and Tubercular Spine Infections. Curr Rev Musculoskelet Med 11, 643–652 (2018). https://doi.org/10.1007/s12178-018-9523-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12178-018-9523-y

Keywords

Navigation