Skip to main content

Advertisement

Log in

Metformin discontinuation less than 72 h is suboptimal for F-18 FDG PET/CT interpretation of the bowel

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

Metformin-induced [F-18] fluorodeoxyglucose (FDG) bowel uptake can hinder positron emission tomography/computed tomography (PET/CT) evaluation of the bowel. This study aimed to investigate the segmental bowel uptake of FDG according to metformin discontinuation times up to 72 h.

Methods

We retrospectively divided 240 diabetic patients into four groups: metformin discontinuation <24 h (group A; n = 86), 24–48 h (group B; n = 40), 48–72 h (group C; n = 12), and no metformin (control group; n = 102). Segmental FDG bowel uptakes were measured visually (four-point scale) and semi-quantitatively (maximum standardized uptake value).

Results

Compared with the control group, FDG uptake increased significantly from the ileum to the rectosigmoid colon in group A, from the transverse to the rectosigmoid colon in group B, and from the descending colon to the rectosigmoid colon in group C in both visual and semi-quantitative analyses.

Conclusions

Metformin discontinuation for <72 h is likely suboptimal for PET/CT image interpretation, especially with respect to the distal segments of the colon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bybel B, Greenberg ID, Paterson J, Ducharme J, Leslie WD. Increased F-18 FDG intestinal uptake in diabetic patients on metformin: a matched case–control analysis. Clin Nucl Med. 2011;36:452–6.

    Article  PubMed  Google Scholar 

  2. Gontier E, Fourme E, Wartski M, Blondet C, Bonardel G, Le Stanc E, et al. High and typical 18F-FDG bowel uptake in patients treated with metformin. Eur J Nucl Med Mol Imaging. 2008;35:95–9.

    Article  CAS  PubMed  Google Scholar 

  3. Ozulker T, Ozulker F, Mert M, Ozpacaci T. Clearance of the high intestinal 18F-FDG uptake associated with metformin after stopping the drug. Eur J Nucl Med Mol Imaging. 2010;37:1011–7.

    Article  PubMed  Google Scholar 

  4. Surasi DS, Bhambhvani P, Baldwin JA, Almodovar SE, O’Malley JP. 18F-FDG PET and PET/CT patient preparation: a review of the literature. J Nucl Med Technol. 2014;42:5–13.

    Article  PubMed  Google Scholar 

  5. Oh JR, Song HC, Chong A, Ha JM, Jeong SY, Min JJ, et al. Impact of medication discontinuation on increased intestinal FDG accumulation in diabetic patients treated with metformin. AJR Am J Roentgenol. 2010;195:1404–10.

    Article  PubMed  Google Scholar 

  6. Abele JT, Fung CI. Effect of hepatic steatosis on liver FDG uptake measured in mean standard uptake values. Radiology. 2010;254:917–24.

    Article  PubMed  Google Scholar 

  7. Abikhzer G, Alabed YZ, Azoulay L, Assayag J, Rush C. Altered hepatic metabolic activity in patients with hepatic steatosis on FDG PET/CT. AJR Am J Roentgenol. 2011;196:176–80.

    Article  PubMed  Google Scholar 

  8. Dostbil Z, Varoglu E, Serdengecti M, Kaya B, Onder H, Sari O. Evaluation of hepatic metabolic activity in non-alcoholic fatty livers on 18FDG PET/CT. Rev Esp Med Nucl Imagen Mol. 2013;32:156–61.

    CAS  PubMed  Google Scholar 

  9. Ries LAG, Young JL, Keel GE, Eisner MP, Lin YD, Horner M-J. SEER survival monograph: cancer survival among adults: US SEER Program, 1988–2001, patient and tumor characteristics. In: National Cancer Institute, SEER Program, NIH Pub. No. 07-6215 2007. http://seer.cancer.gov/archive/publications/survival/seer_survival_mono_lowres.pdf. Accessed 2 June 2016.

  10. Treglia G, Taralli S, Salsano M, Muoio B, Sadeghi R, Giovanella L. Prevalence and malignancy risk of focal colorectal incidental uptake detected by 18F-FDG-PET or PET/CT: a meta-analysis. Radiol Oncol. 2014;48:99–104.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ikeda T, Iwata K, Murakami H. Inhibitory effect of metformin on intestinal glucose absorption in the perfused rat intestine. Biochem Pharmacol. 2000;59:887–90.

    Article  CAS  PubMed  Google Scholar 

  12. Lorch E. Inhibition of intestinal absorption and improvement of oral glucose tolerance by biguanides in the normal and in the streptozotocin-diabetic rat. Diabetologia. 1971;7:195–203.

    Article  CAS  PubMed  Google Scholar 

  13. Wilcock C, Bailey CJ. Accumulation of metformin by tissues of the normal and diabetic mouse. Xenobiotica. 1994;24:49–57.

    Article  CAS  PubMed  Google Scholar 

  14. Bailey CJ, Turner RC. Metformin. N Engl J Med. 1996;334:574–9.

    Article  CAS  PubMed  Google Scholar 

  15. Bailey CJ, Mynett KJ, Page T. Importance of the intestine as a site of metformin-stimulated glucose utilization. Br J Pharmacol. 1994;112:671–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Penicaud L, Hitier Y, Ferre P, Girard J. Hypoglycaemic effect of metformin in genetically obese (fa/fa) rats results from an increased utilization of blood glucose by intestine. Biochem J. 1989;262:881–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Drozdowski LA, Thomson AB. Intestinal sugar transport. World J Gastroenterol. 2006;12:1657–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wright EM, Martin MG, Turk E. Intestinal absorption in health and disease—sugars. Best Pract Res Clin Gastroenterol. 2003;17:943–56.

    Article  CAS  PubMed  Google Scholar 

  19. Massollo M, Marini C, Brignone M, Emionite L, Salani B, Riondato M, et al. Metformin temporal and localized effects on gut glucose metabolism assessed using 18F-FDG PET in mice. J Nucl Med. 2013;54:259–66.

    Article  CAS  PubMed  Google Scholar 

  20. Wilcock C, Bailey CJ. Sites of metformin-stimulated glucose metabolism. Biochem Pharmacol. 1990;39:1831–4.

    Article  CAS  PubMed  Google Scholar 

  21. Chai TF, Hong SY, He H, Zheng L, Hagen T, Luo Y, et al. A potential mechanism of metformin-mediated regulation of glucose homeostasis: inhibition of Thioredoxin-interacting protein (Txnip) gene expression. Cell Signal. 2012;24:1700–5.

    Article  CAS  PubMed  Google Scholar 

  22. Oka S, Liu W, Masutani H, Hirata H, Shinkai Y, Yamada S, et al. Impaired fatty acid utilization in thioredoxin binding protein-2 (TBP-2)-deficient mice: a unique animal model of Reye syndrome. Faseb J. 2006;20:121–3.

    CAS  PubMed  Google Scholar 

  23. Shaked M, Ketzinel-Gilad M, Cerasi E, Kaiser N, Leibowitz G. AMP-activated protein kinase (AMPK) mediates nutrient regulation of thioredoxin-interacting protein (TXNIP) in pancreatic beta-cells. PLoS One. 2011;6:e28804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Roy FN, Beaulieu S, Boucher L, Bourdeau I, Cohade C. Impact of intravenous insulin on 18F-FDG PET in diabetic cancer patients. J Nucl Med. 2009;50:178–83.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Jin Lee.

Ethics declarations

Conflict of interest

Suk Hyun Lee, Soyoung Jin, Hyo Sang Lee, Jin-Sook Ryu, and Jong Jin Lee declare that they have no conflict of interest.

Funding

None to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S.H., Jin, S., Lee, H.S. et al. Metformin discontinuation less than 72 h is suboptimal for F-18 FDG PET/CT interpretation of the bowel. Ann Nucl Med 30, 629–636 (2016). https://doi.org/10.1007/s12149-016-1106-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-016-1106-7

Keywords

Navigation