Skip to main content

Advertisement

Log in

Microbial Inoculants Assisted Growth of Chrysopogon zizanioides Promotes Phytoremediation of Salt Affected Soil

  • Original Research Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Restoration of salt-affected soil through cultivation Chrysopogon zizanioides is a promising approach. The two way benefit of such an approach is that reclamation of salt-affected soil concomitant to improve plant growth and increased yield of essential oil produced in the plants roots. Earlier studies showed physiological changes and reduced growth of C. zizanioides under salinity. In the present study, plant growth promoting microorganisms viz. Pseudomonas monteilii, Bacillus megaterium, Azotobacter chroococcum and Rhizophagus intraradices were used as bio-inoculants for cultivation of C. zizanioides under salt-affected soil. Bio-inoculants in combination with vermicompost significantly increased the growth and productivity of C. zizanioides under salt-affected soil, and simultaneously improved soil health. When compared to control, the soil physico-chemical and biological properties of bio-inoculants treated plants was significantly improved. The reclamation of salt-affected soil was evident by the significant decrease in the level of soil pH (11.0%), electrical conductivity (23.5%), sodium adsorption ratio (15.3%), and exchangeable sodium percent (12.4%) of bio-inoculants treated plants. The improvement of soil cation exchange capacity indicated the decrease in soil salinity. Whereas increase in the microbial count (four-fold), AMF spores (447 spores), dehydrogenase (six-fold), acid (two-fold) and alkaline phosphatase (five-fold) activities in rhizosphere soil of bio-inoculant treated plants indicated the improved biological properties. A positive correlation of plant biomass production to soil organic carbon, total Kjeldahl nitrogen, available phosphorus and cation exchange capacity depicted improved nutrients content in rhizosphere soil of bio-inoculant treated plants. The findings of this study suggest that P. monteilii and R. intraradices with vermicompost can be effectively used as bio-inoculants for encouragement of phytoremediation in salt-affected soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Singh K (2015) Microbial and enzyme activities of saline and sodic soils. Land Degrad De 27:706–718. https://doi.org/10.1002/ldr.2385

    Article  Google Scholar 

  2. Singh K, Trivedi P, Singh G, Singh B, Patra DD (2016) Effect of different leaf litters on carbon, nitrogen and microbial activities of sodic soils. Land Degrad Dev 27:1215–1226. https://doi.org/10.1002/ldr.2313

    Article  Google Scholar 

  3. Chinchmalatpure AR, Bardharr G, Nayak AK, Rao GG, Chaudhari SK, Sharma DK (2014) Effect of sodium adsorption ratio with different electrolyte concentrations on saturated hydraulic conductivity of selected salt affected soils of Gujarat. J Indian Soc Soil Sci 62:1–8

    Google Scholar 

  4. Berruti A, Lumini E, Balestrini R, Bianciotto V (2016) Arbuscular mycorrhizal fungi as natural biofertilizers: let’s benefit from past successes. Front Microbiol 6:1559. https://doi.org/10.3389/fmicb.2015.01559

    Article  PubMed  PubMed Central  Google Scholar 

  5. Belligno A, Russo M, Sardo V, Wu JY (2008) Salinity influence on soil microbial population metabolism and enzymatic activities in lysimeter-grown Olea europaea and Nicotiana glauca. In: Biosaline agriculture and high salinity tolerance. Springer, pp 131–139. https://doi.org/10.1007/978-3-7643-8554-5_13

  6. Ezeaku PI, Ene J, Shehu JA (2015) Application of different reclamation methods on salt affected soils for crop production. Am J Exp Agric 9:1–11. https://doi.org/10.9734/AJEA/2015/17187

    Article  CAS  Google Scholar 

  7. Roy SJ, Negrão S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124. https://doi.org/10.1016/j.copbio.2013.12.004

    Article  PubMed  CAS  Google Scholar 

  8. Bimpong IK, Manneh B, Sock M, Diaw F, Amoah NKA, Ismail AM, Gregorio G, Singh RK, Wopereis M (2016) Improving salt tolerance of lowland rice cultivar ‘Rassi’ through marker-aided backcross breeding in West Africa. Plant Sci 242:288–299. https://doi.org/10.1016/j.plantsci.2015.09.020

    Article  PubMed  CAS  Google Scholar 

  9. Rojas-Tapias D, Moreno-Galván A, Pardo-Díaz S, Obando M, Rivera D, Bonilla R (2012) Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Appl Soil Ecol 61:264–272. https://doi.org/10.1016/j.apsoil.2012.01.006

    Article  Google Scholar 

  10. Leifheit EF, Verbruggen E, Rillig MC (2015) Arbuscular mycorrhizal fungi reduce decomposition of woody plant litter while increasing soil aggregation. Soil Biol Biochem 81:323–328. https://doi.org/10.1016/j.soilbio.2014.12.003

    Article  CAS  Google Scholar 

  11. Rillig MC, Aguilar-Trigueros CA, Bergmann J, Verbruggen E, Veresoglou SD, Lehmann A (2015) Plant root and mycorrhizal fungal traits for understanding soil aggregation. New Phytol 205:1385–1388. https://doi.org/10.1111/nph.13045

    Article  PubMed  CAS  Google Scholar 

  12. Singh K, Pandey VC, Singh RP (2013) Cynodon dactylon: an efficient perennial grass to revegetate sodic lands. Ecol Eng 54:32–38. https://doi.org/10.1016/j.ecoleng.2013.01.007

    Article  Google Scholar 

  13. Maffei ME (2010) Sites of synthesis, biochemistry and functional role of plant volatiles. S Afr J Bot 76:612–631. https://doi.org/10.1016/j.sajb.2010.03.003

    Article  CAS  Google Scholar 

  14. Champagnat P, Figueredo G, Chalchat JC (2006) A study on the composition of commercial Vetiveria zizanioides oils from different geographical origins. J Essent Oil Res 18:416–422. https://doi.org/10.1080/10412905.2006.9699129

    Article  CAS  Google Scholar 

  15. Liu WG, Liu JX, Yao ML, Ma QF (2016) Salt tolerance of a wild ecotype of vetiver grass (Vetiveria zizanioides L.) in southern China. Bot Stud 57:27. https://doi.org/10.1186/s40529-016-0142-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Cuong DC, Minh VV, Truong P (2015) Effects of sea water salinity on the growth of vetiver grass (Chrysopogon zizanioides L.). In: 6th international conference on vetiver (ICV6) Da Nang, pp 1–10

  17. Zhou Q, Yu BJ (2009) Accumulation of inorganic and organic osmolytes and their role in osmotic adjustment in NaCl-stressed vetiver grass seedlings. Russ J Plant Physiol 56:678–685. https://doi.org/10.1134/S1021443709050148

    Article  CAS  Google Scholar 

  18. Gupta PK (2007) Methods in environmental analysis: water, soil and air, 2nd edn. AgroBios, Jodhpur

    Google Scholar 

  19. Singh R, Divya S, Awasthi A, Kalra A (2012) Technology for efficient and successful delivery of vermicompost colonized bioinoculants in Pogostemon cablin (patchouli) Benth. World J Microbiol Biotechnol 28:323–333. https://doi.org/10.1007/s11274-011-0823-2

    Article  PubMed  Google Scholar 

  20. Singh R, Singh R, Soni SK, Singh SP, Chauhan UK, Kalra A (2013) Vermicompost from biodegraded distillation waste improves soil properties and essential oil yield of Pogostemon cablin (patchouli) Benth. Appl Soil Ecol 70:48–56. https://doi.org/10.1016/j.apsoil.2013.04.007

    Article  Google Scholar 

  21. Page AL, Miller RH, Keeney DR (1982) Methods of soil analysis: chemical and microbiological properties. Agronomy, monogroaph, vol 9.2. ASA, SSSA, Madison. https://doi.org/10.2134/agronmonogr9.2.frontmatter

    Book  Google Scholar 

  22. Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161. https://doi.org/10.1016/S0007-1536(70)80110-3

    Article  Google Scholar 

  23. Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular-arbuscular infection in roots. New Phytol 84:489–500. https://doi.org/10.1111/j.1469-8137.1980.tb04556.x

    Article  Google Scholar 

  24. Walkley A, Black IA (1934) An examination of the Degtjareff method for determining organic carbon in soils: effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci 63:251–263

    Article  Google Scholar 

  25. Olsen SR (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department of Agriculture, Washington

    Google Scholar 

  26. Hanway JJ, Heidel H (1952) Soil analyses methods as used in Iowa state college soil testing laboratory. Iowa Agric 57:1–31

    Google Scholar 

  27. Daniels GW, Skipper HD (1982) Methods for the recovery and quantitative estimation of propagules from soil. In: Schenck NC (ed) Methods and principles of mycorrhizal research. American Phytopathology Society, St. Pau, pp 29–35

    Google Scholar 

  28. Tabatabai MA (1982) Methods of soil analysis. In: Page AL, Frene JR, Miller RH (eds) Chemical and microbiological properties (Part II). ASA-CSSA-SSSA, Madison, pp 501–538

    Google Scholar 

  29. Gopinathan R, Prakash M (2014) Effect of vermicompost enriched with bio-fertilizers on the productivity of tomato (Lycopersicum esculentum mill.). Int J Curr Microbiol Appl Sci 3:1238–1245

    Google Scholar 

  30. Pathma J, Sakthivel N (2012) Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. Springerplus 1:26. https://doi.org/10.1186/2193-1801-1-26

    Article  PubMed  PubMed Central  Google Scholar 

  31. Krishnamoorthy R, Kim K, Subramanian P, Senthilkumar M, Anandham R, Sa T (2016) Arbuscular mycorrhizal fungi and associated bacteria isolated from salt-affected soil enhances the tolerance of maize to salinity in coastal reclamation soil. Agric Ecosyst Environ 231:233–239. https://doi.org/10.1016/j.agee.2016.05.037

    Article  CAS  Google Scholar 

  32. McNear DH Jr (2013) The rhizosphere-roots, soil and everything in between. Nat Educ Knowl 4:1

    Google Scholar 

  33. Babu G, Reddy MS (2011) Influence of arbuscular mycorrhizal fungi on the growth and nutrient status of bermudagrass grown in alkaline bauxite processing residue. Environ Pollut 159:25–29. https://doi.org/10.1016/j.envpol.2010.09.032

    Article  CAS  Google Scholar 

  34. Koranda M, Schnecker J, Kaiser C, Fuchslueger L et al (2011) Microbial processes and community composition in the rhizosphere of European beech: the influence of plant C exudates. Soil Biol Biochem 43:551–558. https://doi.org/10.1016/j.soilbio.2010.11.022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Kumar N, Khader JBMA, Rangaswami P, Irulappan I (2010) Introduction to spices, plantation crops, medicinal and aromatic plants. Oxford and IBH Publishing, New Delhi, pp 22.10–22.16

    Google Scholar 

  36. Tripathi AK, Nagarajan T, Verma SC, Rudulier DL (2002) Inhibition of biosynthesis and activity of nitrogenase in Azospirillum brasilense Sp7 under salinity stress. Curr Microbiol 44:363–367. https://doi.org/10.1007/s00284-001-0022-8

    Article  PubMed  CAS  Google Scholar 

  37. Kang SM, Radhakrishnan R, You YH, Joo GJ, Lee IJ, Lee KE, Kim JH (2014) Phosphate solubilizing Bacillus megaterium mj1212 regulates endogenous plant carbohydrates and amino acids contents to promote mustard plant growth. Indian J Microbiol 54:427–433. https://doi.org/10.1007/s12088-014-0476-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Battini F, Grønlund M, Agnolucci M, Giovannetti M, Jakobsen I (2017) Facilitation of phosphorus uptake in maize plants by mycorrhizosphere bacteria. Sci Rep 7:4686. https://doi.org/10.1038/s41598-017-04959-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Wang Y, Wang M, Li Y, Wu A, Huang J (2018) Effects of arbuscular mycorrhizal fungi on growth and nitrogen uptake of Chrysanthemum morifolium under salt stress. PLoS ONE 13:e0196408. https://doi.org/10.1371/journal.pone.0196408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Balliu A, Sallaku G, Rewald B (2015) AMF inoculation enhances growth and improves the nutrient uptake rates of transplanted, salt-stressed tomato seedlings. Sustainability 7:15967–15981

    Article  CAS  Google Scholar 

  41. Evelin H, Giri B, Kapoor R (2012) Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza 22:203–217. https://doi.org/10.1007/s00572-011-0392-0

    Article  PubMed  CAS  Google Scholar 

  42. Al-Karaki GN (2017) Effects of mycorrhizal fungi inoculation on green pepper yield and mineral uptake under irrigation with saline water. Adv Plants Agric Res 6:00231. https://doi.org/10.15406/apar.2017.06.00231

    Article  Google Scholar 

  43. Utobo EB, Tewari L (2015) Soil enzymes as bioindicators of soil ecosystem status. Appl Ecol Environ Res 13:147–169. https://doi.org/10.15666/aeer/1301_147169

    Article  Google Scholar 

  44. Das SK, Varma A (2011) Role of enzymes in maintaining soil health. In: Shukla G, Varma A (eds) Soil enzymology. Soil biology, vol 22. Springer, Berlin

    Google Scholar 

  45. Badda N, Yadav K, Kadian N, Aggarwal A (2013) Impact of arbuscular mycorrhizal fungi with Trichoderma viride and Pseudomonas fluorescens on growth enhancement of genetically modified Bt Cotton (Bacillus thuringiensis). J Nat Fibers 10:309–325. https://doi.org/10.1080/15440478.2013.791913

    Article  CAS  Google Scholar 

  46. Deveau A, Labbé J (2016) Mycorrhiza helper bacteria. In: Martin F (ed) Molecular mycorrhizal symbiosis. Wiley, Hoboken, pp 437–450. https://doi.org/10.1002/9781118951446.ch24

    Chapter  Google Scholar 

  47. Daynes CN, Field DJ, Saleeba JA, Cole MA, McGee PA (2013) Development and stabilisation of soil structure via interactions between organic matter, arbuscular mycorrhizal fungi and plant roots. Soil Biol Biochem 57:683–694. https://doi.org/10.1016/j.soilbio.2012.09.020

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to director CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow (India) for providing all the necessary facilities under institutional network Project-BSC0110.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kumar Verma.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Geetu Singh: AcSIR-CIMAP PhD student

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 1019 kb)

Supplementary material 2 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pankaj, U., Singh, D.N., Singh, G. et al. Microbial Inoculants Assisted Growth of Chrysopogon zizanioides Promotes Phytoremediation of Salt Affected Soil. Indian J Microbiol 59, 137–146 (2019). https://doi.org/10.1007/s12088-018-00776-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-018-00776-9

Keywords

Navigation