Skip to main content

Advertisement

Log in

Fatty liver score and 15-year incidence of type 2 diabetes

  • Original Article
  • Published:
Hepatology International Aims and scope Submit manuscript

Abstract

Purpose

Both non-alcoholic fatty liver (NAFL) and alcoholic fatty liver (AFL) are strongly associated with obesity, metabolic syndrome, and type 2 diabetes mellitus (T2DM). Recently, also the vitamin D level has been associated with these and may also be associated with fatty liver (FL). Liver function tests (LFTs) are insensitive markers of FL, but use of scores may help in identifying subjects with FL. We studied how LFTs and the FL score predict the development of T2DM in subjects with AFL versus NAFL and low versus high vitamin D levels.

Methods

A cohort study based on 4,517 participants, aged 40–79, from the representative Mini-Finland Health Survey was carried out. During a follow-up of 15 years, 217 T2DM cases occurred. LFTs were determined from serum samples, and the FL score was formed using BMI, fasting glucose, HDL cholesterol, and GGT concentrations.

Results

The risk of T2DM incidence in the highest versus lowest quartile was twofold for the LFTs and ninefold for the FL score. A total of 77 % (95 % confidence interval: 57–87 %) of the T2DM cases could have been prevented if all individuals’ FL scores had been at the level of the first quartile. Heavy alcohol consumption and low serum vitamin D concentrations were associated with an increased risk of T2DM among individuals with high FL scores.

Conclusions

The FL score is a useful tool for diagnosing FL in epidemiological studies. A high FL score predicts increased risk of T2DM, especially when combined with heavy alcohol consumption or low vitamin D levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Clark JM, Brancati FL, Diehl AM. The prevalence and etiology of elevated aminotransferase levels in the United States. Am J Gastroenterol. 2003;98:960–967

    Article  CAS  Google Scholar 

  2. Everhart JE, Bambha KM. Fatty liver: think globally. Hepatology. 2010;51:1491–1493

    Article  Google Scholar 

  3. Serfaty L, Lemoine M. Definition and natural history of metabolic steatosis: clinical aspects of NAFLD, NASH and cirrhosis. Diabetes Metab. 2008;34:634–637

    Article  CAS  Google Scholar 

  4. Boppidi H, Daram SR. Nonalcoholic fatty liver disease: hepatic manifestation of obesity and the metabolic syndrome. Postgrad Med. 2008;120:E01–E07

    Article  Google Scholar 

  5. Kotronen A, Yki-Järvinen H. Fatty liver: a novel component of the metabolic syndrome. Arterioscler Thromb Vasc Biol. 2008;28:27–38

    Article  CAS  Google Scholar 

  6. Targher G, Marra F, Marchesini G. Increased risk of cardiovascular disease in non-alcoholic fatty liver disease: causal effect or epiphenomenon? Diabetologia. 2008;51:1947–1953

    Article  CAS  Google Scholar 

  7. Angulo P. Nonalcoholic fatty liver disease. N Engl J Med. 2002;346:1221–1231

    Article  CAS  Google Scholar 

  8. Targher G, Bertolini L, Padovani R, Rodella S, Tessari R, Zenari L, Day C, Arcaro G. Prevalence of nonalcoholic fatty liver disease and its association with cardiovascular disease among type 2 diabetic patients. Diabetes Care. 2007;30:1212–1218

    Article  Google Scholar 

  9. Angulo P, Hui JM, Marchesini G, Bugianesi E, George J, Farrell GC, Enders F, Saksena S, Burt AD, Bida JP, Lindor K, Sanderson SO, Lenzi M, Adams LA, Kench J, Therneau TM, Day CP. The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology. 2007;45:846–854

    Article  CAS  Google Scholar 

  10. Cortez-Pinto H, Camilo ME. Non-alcoholic fatty liver disease/non-alcoholic steatohepatitis (NAFLD/NASH): diagnosis and clinical course. Best Pract Res Clin Gastroenterol. 2004;18:1089–1104

    Article  CAS  Google Scholar 

  11. Kotronen A, Yki-Järvinen H, Männistö S, Saarikoski L, Korpi-Hyovälti E, Oksa H, Saltevo J, Saaristo T, Sundvall J, Tuomilehto J, Peltonen M. Non-alcoholic and alcoholic fatty liver disease—two diseases of affluence associated with the metabolic syndrome and type 2 diabetes: the FIN-D2D survey. BMC Public Health. 2010;10:237

    Article  Google Scholar 

  12. Goessling W, Massaro JM, Vasan RS, D’Agostino RB Sr, Ellison RC, Fox CS. Aminotransferase levels and 20-year risk of metabolic syndrome, diabetes, and cardiovascular disease. Gastroenterology. 2008;135:1935–1944. 1944.e1

    Article  CAS  Google Scholar 

  13. Lee DH, Silventoinen K, Jacobs DR Jr, Jousilahti P, Tuomilehto J. gamma-Glutamyltransferase, obesity, and the risk of type 2 diabetes: observational cohort study among 20,158 middle-aged men and women. J Clin Endocrinol Metab. 2004;89:5410–5414

    Article  CAS  Google Scholar 

  14. Lyssenko V, Jonsson A, Almgren P, Pulizzi N, Isomaa B, Tuomi T, Berglund G, Altshuler D, Nilsson P, Groop L. Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med. 2008;359:2220–2232

    Article  CAS  Google Scholar 

  15. Wannamethee SG, Shaper AG, Lennon L, Whincup PH. Hepatic enzymes, the metabolic syndrome, and the risk of type 2 diabetes in older men. Diabetes Care. 2005;28:2913–2918

    Article  CAS  Google Scholar 

  16. Vozarova B, Stefan N, Lindsay RS, Saremi A, Pratley RE, Bogardus C, Tataranni PA. High alanine aminotransferase is associated with decreased hepatic insulin sensitivity and predicts the development of type 2 diabetes. Diabetes. 2002;51:1889–1895

    Article  CAS  Google Scholar 

  17. Sattar N, McConnachie A, Ford I, Gaw A, Cleland SJ, Forouhi NG, McFarlane P, Shepherd J, Cobbe S, Packard C. Serial metabolic measurements and conversion to type 2 diabetes in the west of Scotland coronary prevention study: specific elevations in alanine aminotransferase and triglycerides suggest hepatic fat accumulation as a potential contributing factor. Diabetes. 2007;56:984–991

    Article  CAS  Google Scholar 

  18. Kotronen A, Westerbacka J, Bergholm R, Pietiläinen KH, Yki-Järvinen H. Liver fat in the metabolic syndrome. J Clin Endocrinol Metab. 2007;92:3490–3497

    Article  CAS  Google Scholar 

  19. Browning JD, Szczepaniak LS, Dobbins R, Nuremberg P, Horton JD, Cohen JC, Grundy SM, Hobbs HH. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology. 2004;40:1387–1395

    Article  Google Scholar 

  20. Kotronen A, Peltonen M, Hakkarainen A, Sevastianova K, Bergholm R, Johansson LM, Lundbom N, Rissanen A, Ridderstråle M, Groop L, Orho-Melander M, Yki-Järvinen H. Prediction of non-alcoholic fatty liver disease and liver fat using metabolic and genetic factors. Gastroenterology. 2009;137:865–872

    Article  CAS  Google Scholar 

  21. Knekt P, Laaksonen M, Mattila C, Härkänen T, Marniemi J, Heliövaara M, Rissanen H, Montonen J, Reunanen A. Serum vitamin D and subsequent occurrence of type 2 diabetes. Epidemiology. 2008;19:666–671

    Article  Google Scholar 

  22. Laaksonen MA, Knekt P, Rissanen H, Härkänen T, Virtala E, Marniemi J, Aromaa A, Heliövaara M, Reunanen A. The relative importance of modifiable potential risk factors of type 2 diabetes: a meta-analysis of two cohorts. Eur J Epidemiol. 2010;25:115–124

    Article  Google Scholar 

  23. Mattila C, Knekt P, Männistö S, Rissanen H, Laaksonen MA, Montonen J, Reunanen A. Serum 25-hydroxyvitamin D concentration and subsequent risk of type 2 diabetes. Diabetes Care. 2007;30:2569–2570

    Article  CAS  Google Scholar 

  24. Pittas AG, Lau J, Hu FB, Dawson-Hughes B. The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis. J Clin Endocrinol Metab. 2007;92:2017–2029

    Article  CAS  Google Scholar 

  25. Lips P. Vitamin D physiology. Prog Biophys Mol Biol. 2006;92:4–8

    Article  CAS  Google Scholar 

  26. Aigner E, Theurl I, Theurl M, Lederer D, Haufe H, Dietze O, Strasser M, Datz C, Weiss G. Pathways underlying iron accumulation in human nonalcoholic fatty liver disease. Am J Clin Nutr. 2008;87:1374–1383

    Article  CAS  Google Scholar 

  27. Cigolini M, Targher G, Agostino G, Tonoli M, Muggeo M, De Sandre G. Liver steatosis and its relation to plasma haemostatic factors in apparently healthy men—role of the metabolic syndrome. Thromb Haemost. 1996;76:69–73

    CAS  PubMed  Google Scholar 

  28. Aromaa A, Heliövaara M, Impivaara O, Knekt P, Maatela J. The execution of the Mini-Finland Health Survey. Part 1: Aims, Methods, and Study Population. Helsinki and Turku: Publications of the Social Insurance Institution ML:88; 1989

  29. Kostner GM. Letter: enzymatic determination of cholesterol in high-density lipoprotein fractions prepared by polyanion precipitation. Clin Chem. 1976;22:695

    CAS  PubMed  Google Scholar 

  30. Neuschwander-Tetri BA, Caldwell SH. Nonalcoholic steatohepatitis: summary of an AASLD single topic conference. Hepatology. 2003;37:1202–1219

    Article  Google Scholar 

  31. Reunanen A, Kangas T, Martikainen J, Klaukka T. Nationwide survey of comorbidity, use, and costs of all medications in Finnish diabetic individuals. Diabetes Care. 2000;23:1265–1271

    Article  CAS  Google Scholar 

  32. World Health Organization. Diabetes Mellitus: Report of a WHO Study Group. Geneva: WHO; 1985

  33. Heliövaara M, Reunanen A, Aromaa A, Knekt P, Aho K, Suhonen O. Validity of hospital discharge data in a prospective epidemiological study on stroke and myocardial infarction. Acta Med Scand. 1984;216:309–315

    Article  Google Scholar 

  34. Reunanen A, Aromaa A, Pyörälä K, Punsar S, Maatela J, Knekt P. The Social Insurance Institution’s coronary heart disease study. Baseline data and 5-year mortality experience. Acta Med Scand Suppl. 1983;673:1–120

    CAS  PubMed  Google Scholar 

  35. Friedman M. Piecewise constant hazards models for survival data with covariates. Ann Stat. 1982;10:101–113

    Article  Google Scholar 

  36. Chiang PH, Chang TY, Chen JD. Synergistic effect of fatty liver and smoking on metabolic syndrome. World J Gastroenterol. 2009;15:5334–5339

    Article  CAS  Google Scholar 

  37. Marchesini G, Brizi M, Bianchi G, Tomassetti S, Bugianesi E, Lenzi M, McCullough AJ, Natale S, Forlani G, Melchionda N. Nonalcoholic fatty liver disease: a feature of the metabolic syndrome. Diabetes. 2001;50:1844–1850

    Article  CAS  Google Scholar 

  38. Zelber-Sagi S, Nitzan-Kaluski D, Goldsmith R, Webb M, Zvibel I, Goldiner I, Blendis L, Halpern Z, Oren R. Role of leisure-time physical activity in nonalcoholic fatty liver disease: a population-based study. Hepatology. 2008;48:1791–1798

    Article  Google Scholar 

  39. Shah VH. Alcoholic liver disease: the buzz may be gone, but the hangover remains. Hepatology. 2010;51:1483–1484

    Article  Google Scholar 

  40. Wannamethee SG, Camargo CA Jr, Manson JE, Willett WC, Rimm EB. Alcohol drinking patterns and risk of type 2 diabetes mellitus among younger women. Arch Intern Med. 2003;163:1329–1336

    Article  Google Scholar 

  41. Targher G, Bertolini L, Scala L, Cigolini M, Zenari L, Falezza G, Arcaro G. Associations between serum 25-hydroxyvitamin D3 concentrations and liver histology in patients with non-alcoholic fatty liver disease. Nutr Metab Cardiovasc Dis. 2007;17:517–524

    Article  CAS  Google Scholar 

  42. Jääskeläinen T, Knekt P, Marniemi J, Sares-Jäske L, Männistö S, Heliövaara M, Järvinen R. Vitamin D status is associated with sociodemographic factors, lifestyle and metabolic health. Eur J Nutr. 2012;52:513–525

    Article  Google Scholar 

  43. Bedogni G, Bellentani S, Miglioli L, Masutti F, Passalacqua M, Castiglione A, Tiribelli C. The fatty liver index: a simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006;2:33

    Article  Google Scholar 

  44. Bajaj S, Nigam P, Luthra A, Pandey RM, Kondal D, Bhatt SP, Wasir JS, Misra A. A case control study on insulin resistance, metabolic co-variates & prediction score in non alcoholic fatty liver disease. Indian J Med Res. 2009;129:285–292

    CAS  PubMed  Google Scholar 

  45. Norris RL, Thomas MJ, Craswell PW. Assessment of a two-step high-performance liquid chromatographic assay using dual-wavelength ultraviolet monitoring for 25-hydroxyergocalciferol and 25-hydroxycholecalciferol in human serum or plasma. J Chromatogr. 1986;381:53–61

    Article  CAS  Google Scholar 

  46. Stamp TC, Round JM. Seasonal changes in human plasma levels of 25-hydroxyvitamin D. Nature. 1974;247:563–565

    Article  CAS  Google Scholar 

  47. Knekt P, Marniemi J, Teppo L, Heliövaara M, Aromaa A. Is low selenium status a risk factor for lung cancer? Am J Epidemiol. 1998;148:975–982

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maarit A. Laaksonen.

Additional information

Anna Kotronen and Maarit A. Laaksonen contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotronen, A., Laaksonen, M.A., Heliövaara, M. et al. Fatty liver score and 15-year incidence of type 2 diabetes. Hepatol Int 7, 610–621 (2013). https://doi.org/10.1007/s12072-013-9430-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12072-013-9430-7

Keywords

Navigation