Skip to main content
Log in

A density functional study on synthetic polymer–amino acid interaction

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Interaction of four synthetic polymers viz., poly-\(\upvarepsilon \)-caprolactone (PCL), polyglycolide (PGA), polylactic acid (PLA) and Poly(lactic-co-glycolic) acid (PLGA) used as protein delivery vectors with a few amino acids have been studied by using density functional theory. Association geometries of polymer–amino acid adduct are modelled in a vacuum and in four solvents. Nature and strength of interaction have been analyzed in terms of interaction energy and thermochemical parameters of adducts as well as vibrational frequency shifts upon adduct formation. Results suggest comprehensive stability of adducts in the gas phase. Progressive destabilization of adducts with increasing polarity of solvent is observed. Redshifts in vibrational frequencies of X-H bonds (\(\hbox {X}= \hbox {H}\) donor in hydrogen bonding) upon adduct formation are noticed. The study asserts the potentiality of the considered synthetic polymers as an amino acid carrier.

Graphical Abstract

Synopsis Synthetic polymers can form stable complexes with amino acids and are potential vectors for protein delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Jain A, Gulbake A, Shilpi S, Hurkat P and Jain S K 2013 Peptide and protein delivery using new drug delivery systems Crit. Rev. Ther. Drug Carrier Syst. 30 293

    Article  CAS  PubMed  Google Scholar 

  2. Wise D L, Fellmann T D, Sanderson J E and Wentworth R L 1979 Lactic/glycolic acid polymers In Drug carriers in biology and medicine (London: Academic) p. 237

  3. Mohamed F and van der Walle C F 2008 Engineering biodegradable polyester particles with specific drug targeting and drug release properties J. Pharm. Sci. 97 71

    Article  CAS  PubMed  Google Scholar 

  4. Scott R C, Crabbe D, Krynska B, Ansari R and Kiani M F 2008 Aiming for the heart: targeted delivery of drugs to diseased cardiac tissue Expert Opin. Drug Deliv. 5 459

    Article  CAS  PubMed  Google Scholar 

  5. Wei Q, Becherer T, Angioletti-Uberti S, Dzubiella J, Wischke C, Neffe A T, Lendlein A, Ballauff M and Haag R 2014 Protein interactions with polymer coatings and biomaterials Angew. Chem. Int. Edit. 53 8004

    Article  CAS  Google Scholar 

  6. Jagur-Grodzinski J 1999 Biomedical application of functional polymers React. Funct. Polym. 39 99

    Article  CAS  Google Scholar 

  7. Kim S Y, Lee Y M, Baik D J and Kang J S 2003 Toxic characteristics of methoxy poly (ethylene glycol)/poly (\(\upvarepsilon \)-caprolactone) nanospheres; in vitro and in vivo studies in the normal mice Biomaterials 24 55

    Article  CAS  PubMed  Google Scholar 

  8. Lanao R P F, Jonker A M, Wolke J G, Jansen JA, van Hest J C and Leeuwenburgh S C 2013 Physicochemical properties and applications of poly (lactic-co-glycolic acid) for use in bone regeneration Tissue Eng. Part B: Rev. 19 380

    Article  CAS  Google Scholar 

  9. Teupe C, Meffert R, Winckler S, Ritzerfeld W, Törmälä P and Brug E 1992 Ciprofloxacin-impregnated poly-L-lactic acid drug carrier Arch. Orthop. Trauma Surg. 112 33

    Article  CAS  PubMed  Google Scholar 

  10. Benoit M-A, Baras B and Gillard J 1999 Preparation and characterization of protein-loaded poly (\(\varepsilon \)-caprolactone) microparticles for oral vaccine delivery Int. J. Pharm. 184 73

    Article  CAS  PubMed  Google Scholar 

  11. Mukerjee A, Pruthi V and Sinha V 2006 Preparation and characterization of poly-\(\varepsilon \)-caprolactone carrier particles for controlled insulin delivery Biomedical and Pharmaceutical Engineering ICBPE International Conference on, IEEE 276–279

  12. Puhl S, Li L, Meinel L and Germershaus O 2014 Controlled protein delivery from electrospun non-wovens: novel combination of protein crystals and a biodegradable release matrix Mol. Pharm. 11 2372

    Article  CAS  PubMed  Google Scholar 

  13. Wang F, Liu X, Yuan J, Yang S, Li Y and Gao Q 2016 Synthesis and characterization of poly (lactic acid-co-glycolic acid) complex microspheres as drug carriers J. Biomater. Appl. 31 544

    Article  CAS  PubMed  Google Scholar 

  14. Li M, Neoh K G, Kang E T, Lau T and Chiong E 2014 Surface modification of silicone with covalently immobilized and crosslinked agarose for potential application in the inhibition of infection and omental wrapping Adv. Funct. Mater. 24 1631

    Article  CAS  Google Scholar 

  15. Liu Y, Yin Y, Wang L, Zhang W, Chen X, Yang X, Xu J and Ma G 2013 Engineering biomaterial-associated complement activation to improve vaccine efficacy Biomacromolecules 14 3321

    Article  CAS  PubMed  Google Scholar 

  16. Costa D, Garrain P A and Baaden M 2013 Understanding small biomolecule-biomaterial interactions: A review of fundamental theoretical and experimental approaches for biomolecule interactions with inorganic surfaces J. Biomed. Mat. Res. Part A 101 1210

    Article  CAS  Google Scholar 

  17. Rabe M, Verdes D and Seeger S 2011 Understanding protein adsorption phenomena at solid surfaces Adv. Colloid Interface Sci. 162 87

    Article  CAS  PubMed  Google Scholar 

  18. Qu Z G, He X C, Lin M, Sha B Y, Shi X H, Lu T J and Xu F 2013 Advances in the understanding of nanomaterial–biomembrane interactions and their mathematical and numerical modeling Nanomedicine 8 995

    Article  CAS  PubMed  Google Scholar 

  19. Jeyachandran Y, Mielczarski E, Rai B and Mielczarski J 2009 Quantitative and qualitative evaluation of adsorption/desorption of bovine serum albumin on hydrophilic and hydrophobic surfaces Langmuir 25 11614

    Article  CAS  PubMed  Google Scholar 

  20. Lu D R, Lee S J and Park K 1992 Calculation of solvation interaction energies for protein adsorption on polymer surfaces J. Biomater. Sci. Polym. Ed. 3 127

    Article  Google Scholar 

  21. O’Brien C, Stuart S, Bruce D and Latour R 2008 Modeling of peptide adsorption interactions with a poly (lactic acid) surface Langmuir 24 14115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Raffaini G and Ganazzoli F 2007 Understanding the performance of biomaterials through molecular modeling: crossing the bridge between their intrinsic properties and the surface adsorption of proteins Macromol. Biosci. 7 552

    Article  CAS  PubMed  Google Scholar 

  23. Zhang L, Zhao G and Sun Y 2009 Molecular insight into protein conformational transition in hydrophobic charge induction chromatography: a molecular dynamics simulation J. Phys. Chem. B 113 6873

    Article  CAS  PubMed  Google Scholar 

  24. Liu Y, Wu M, Feng X, Shao X and Cai W 2012 Adsorption behavior of hydrophobin proteins on polydimethylsiloxane substrates J. Phys. Chem. B 116 12227

    Article  CAS  PubMed  Google Scholar 

  25. Politzer P and Murray J S 2002 The fundamental nature and role of the electrostatic potential in atoms and molecules Theor. Chem Acc. 108 134

    Article  CAS  Google Scholar 

  26. Boys S F and Bernardi F D 1970 The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors Mol. Phys. 19 553

    Article  CAS  Google Scholar 

  27. Tomasi J and Persico M 1994 Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent Chem. Rev. 94 2027

    Article  CAS  Google Scholar 

  28. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A, Peralta J E Jr., Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas Ö, Foresman J B, Ortiz J V, Cioslowski J and Fox D J Gaussian 09 (Gaussian, Inc., Wallingford CT, 2009).

    Google Scholar 

  29. Deka B C and Bhattacharyya P K 2017 DFT study on host-guest interaction in chitosan–amino acid complexes Comput. Theor. Chem. 1110 40

    Article  CAS  Google Scholar 

  30. Saha B and Bhattacharyya P K 2016 Adsorption of amino acids on boron and/or nitrogen doped functionalized graphene: A Density Functional Study Comput. Theor. Chem. 1086 45

    Article  CAS  Google Scholar 

  31. Hwang S-G and Chung D-S 2005 Calculation of the solvation free energy of the proton in methanol Bull. Korean Chem. Soc. 26 589

    Article  CAS  Google Scholar 

  32. Deka B C and Bhattacharyya P K 2016 Reactivity of chitosan derivatives and their interaction with guanine: A computational study J. Chem. Sci. 128 589

    Article  CAS  Google Scholar 

  33. Sarma D, Saha B, Deka B C and Bhattacharyya P K 2016 Unique cation-cyclohexane interactions in tri- and hexa-fluorocyclohexane multidecker complexes in the gas phase: a DFT study RSC Adv. 6 111856

    Article  CAS  Google Scholar 

  34. Fornaro T, Biczysko M, Monti S and Barone V 2014 Dispersion corrected DFT approaches for anharmonic vibrational frequency calculations: nucleobases and their dimers Phys. Chem. Chem. Phys. 16 10112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Plützer C, Hünig I, Kleinermanns K, Nir E and de Vries M S 2003 Pairing of Isolated Nucleobases: Double Resonance Laser Spectroscopy of Adenine–Thymine Chem. Phys. Chem. 4 838

    Article  CAS  PubMed  Google Scholar 

  36. Banga A K 2015 In Therapeutic peptides and proteins: Formulation, processing, and delivery systems (Boca Raton: CRC Press)

    Book  Google Scholar 

  37. Minenkov Y, Singstad Å, Occhipinti G and Jensen V R 2012 The accuracy of DFT-optimized geometries of functional transition metal compounds: a validation study of catalysts for olefin metathesis and other reactions in the homogeneous phase Dalton Trans. 41 5526

    Article  CAS  PubMed  Google Scholar 

  38. Zhao Y and Truhlar D G 2008 The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals Theor. Chem. Acc. 120 215

    Article  CAS  Google Scholar 

  39. Chai J-D and Head-Gordon M 2008 Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections Phys. Chem. Chem. Phys. 10 6615

    Article  CAS  PubMed  Google Scholar 

  40. DiLabio G A and Johnson E R, Otero-de-la-Roza A 2013 Performance of conventional and dispersion-corrected density-functional theory methods for hydrogen bonding interaction energies Phys. Chem. Chem. Phys. 15 12821

    Article  CAS  PubMed  Google Scholar 

  41. Deka B C, Purkayastha S K and Bhattacharyya P K 2016 Formation of thiophene sandwiches through cation–\(\pi \) interaction: A DFT study Comput. Theor. Chem. 1095 83

    Article  CAS  Google Scholar 

  42. Bhattacharyya P K 2017 Exploring Cation-Interaction in the Complexes with BB Triple Bond: A DFT Study J. Phys. Chem. A 121 3287

    Article  CAS  PubMed  Google Scholar 

  43. Bhattacharyya P K 2017 BH \(\text{ b }\cdots \pi \) interactions in benzene–borazine sandwich and multidecker complexes: a DFT study New J. Chem. 41 1293

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors sincerely acknowledge the Department of Science and Technology, New Delhi, India (Grant No. SB/S1/PC-17/2014) for providing the computational set-up required for the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradip Kr. Bhattacharyya.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 587 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deka, B.C., Bhattacharyya, P.K. A density functional study on synthetic polymer–amino acid interaction. J Chem Sci 130, 122 (2018). https://doi.org/10.1007/s12039-018-1524-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-018-1524-2

Keywords

Navigation