Skip to main content

Advertisement

Log in

miRNA-27a-3p and miRNA-222-3p as Novel Modulators of Phosphodiesterase 3a (PDE3A) in Cerebral Microvascular Endothelial Cells

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Endothelial dysfunction is a key element in cerebral small vessel disease (CSVD), which may cause stroke and cognitive decline. Cyclic nucleotide signaling modulates endothelial function. The cyclic adenosine monophosphate-degrading enzyme phosphodiesterase 3 (PDE3) is an important treatment target which may be modulated by microRNAs (miRNAs) important for regulating gene expression. We aimed to identify PDE3-targeting miRNAs to highlight potential therapeutic targets for endothelial dysfunction and CSVD. PDE3-targeting miRNAs were identified by in silico analysis (TargetScan, miRWalk, miRanda, and RNA22). The identified miRNAs were ranked on the basis of TargetScan context scores and their expression (log2 read counts) in a human brain endothelial cell line (hCMEC/D3) described recently. miRNAs were subjected to co-expression meta-analysis (CoMeTa) to create miRNA clusters. The pathways targeted by the miRNAs were assigned functional annotations via the KEGG pathway and COOL. hCMEC/D3 cells were transfected with miRNA mimics miR-27a-3p and miR-222-3p, and the effect on PDE3A protein expression was analyzed by Western blotting. Only PDE3A is expressed in hCMEC/D3 cells. The in silico prediction identified 67 PDE3A-related miRNAs, of which 49 were expressed in hCMEC/D3 cells. Further analysis of the top two miRNA clusters (miR-221/miR-222 and miR-27a/miR-27b/miR-128) indicated a potential link to pathways relevant to cerebral and vascular integrity and repair. hCMEC/D3 cells transfected with miR-27a-3p and miR-222-3p mimics had reduced relative expression of PDE3A protein. PDE3A-related miRNAs miR-221/miR-222 and miR-27a/miR-27b/miR-128 are potentially linked to pathways essential for immune regulation as well as cerebral and vascular integrity/function. Furthermore, relative PDE3A protein expression was reduced by miR27a-3p and miR-222-3p.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nezu T, Hosomi N, Aoki S, Kubo S, Araki M, Mukai T, Takahashi T, Maruyama H et al (2015) Endothelial dysfunction is associated with the severity of cerebral small vessel disease. Hypertens Res 38(4):291–297

    Article  Google Scholar 

  2. Patterson CE, Lum H, Schaphorst KL, Verin AD, Garcia JN (2000) Regulation of endothelial barrier function by the cAMP-dependent protein kinase. Endothelium 7(4):287–308

    Article  CAS  Google Scholar 

  3. Surapisitchat J, Beavo JA (2011) Regulation of endothelial barrier function by cyclic nucleotides: the role of phosphodiesterases. Handb Exp Pharmacol 204:193–210

    Article  CAS  Google Scholar 

  4. Birk S, Edvinsson L, Olesen J, Kruuse C (2004) Analysis of the effects of phosphodiesterase type 3 and 4 inhibitors in cerebral arteries. Eur J Pharmacol 489(1–2):93–100

    Article  CAS  Google Scholar 

  5. de Donato G, Setacci F, Galzerano G, Mele M, Ruzzi U, Setacci C (2016) The use of cilostazol in patients with peripheral arterial disease: results of a national physician survey. J Cardiovasc Surg 57(3):457–465

    Google Scholar 

  6. Dinicolantonio JJ, Lavie CJ, Fares H, Menezes AR, O'Keefe JH, Bangalore S, Messerli FH (2013) Meta-analysis of cilostazol versus aspirin for the secondary prevention of stroke. Am J Cardiol 112(8):1230–1234

    Article  CAS  Google Scholar 

  7. Matsumoto M (2005) Cilostazol in secondary prevention of stroke: impact of the cilostazol stroke prevention study. Atheroscler Suppl 6(4):33–40

    Article  CAS  Google Scholar 

  8. Fukuhara S, Sakurai A, Sano H, Yamagishi A, Somekawa S, Takakura N, Saito Y, Kangawa K et al (2005) Cyclic AMP potentiates vascular endothelial cadherin-mediated cell-cell contact to enhance endothelial barrier function through an Epac-Rap1 signaling pathway. Mol Cell Biol 25(1):136–146

    Article  CAS  Google Scholar 

  9. Horai S, Nakagawa S, Tanaka K, Morofuji Y, Couraud PO, Deli MA, Ozawa M, Niwa M (2013) Cilostazol strengthens barrier integrity in brain endothelial cells. Cell Mol Neurobiol 33(2):291–307

    Article  CAS  Google Scholar 

  10. Sugiura Y, Morikawa T, Takenouchi T, Suematsu M, Kajimura M (2014) Cilostazol strengthens the endothelial barrier of postcapillary venules from the rat mesentery in situ. Phlebology 29(9):594–599

    Article  Google Scholar 

  11. Malik R, Dichgans M (2018) Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat Genet 50(4):524–537

    Article  CAS  Google Scholar 

  12. Arboix A (2011) Lacunar infarct and cognitive decline. Expert Rev Neurother 11(9):1251–1254

    Article  Google Scholar 

  13. Teng Z, Dong Y, Zhang D, An J, Lv P (2017) Cerebral small vessel disease and post-stroke cognitive impairment. Int J Neurosci 127(9):824–830

    Article  Google Scholar 

  14. Lee SJ, Lee JS, Choi MH, Lee SE, Shin DH, Hong JM (2017) Cilostazol improves endothelial function in acute cerebral ischemia patients: a double-blind placebo controlled trial with flow-mediated dilation technique. BMC Neurol 17(1):169

    Article  Google Scholar 

  15. Wang J, Chen J, Sen S (2016) MicroRNA as biomarkers and diagnostics. J Cell Physiol 231(1):25–30

    Article  CAS  Google Scholar 

  16. Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16(3):203–222

    Article  CAS  Google Scholar 

  17. Kuehbacher A, Urbich C, Zeiher AM, Dimmeler S (2007) Role of dicer and Drosha for endothelial MicroRNA expression and angiogenesis. Circ Res 101(1):59–68

    Article  CAS  Google Scholar 

  18. Suarez Y, Fernandez-Hernando C, Pober JS, Sessa WC (2007) Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res 100(8):1164–1173

    Article  CAS  Google Scholar 

  19. Keravis T, Lugnier C (2012) Cyclic nucleotide phosphodiesterase (PDE) isozymes as targets of the intracellular signalling network: benefits of PDE inhibitors in various diseases and perspectives for future therapeutic developments. Br J Pharmacol 165(5):1288–1305

    Article  CAS  Google Scholar 

  20. Lugnier C (2006) Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol Ther 109(3):366–398

    Article  CAS  Google Scholar 

  21. Houslay M (2015) Hypertension linked to PDE3A activation. Nat Genet 47(6):562–563

    Article  CAS  Google Scholar 

  22. Maass PG, Aydin A, Luft FC, Schachterle C, Weise A, Stricker S, Lindschau C, Vaegler M et al (2015) PDE3A mutations cause autosomal dominant hypertension with brachydactyly. Nat Genet 47(6):647–653

    Article  CAS  Google Scholar 

  23. Harndahl L, Wierup N, Enerback S, Mulder H, Manganiello VC, Sundler F, Degerman E, Ahren B et al (2004) Beta-cell-targeted overexpression of phosphodiesterase 3B in mice causes impaired insulin secretion, glucose intolerance, and deranged islet morphology. J Biol Chem 279(15):15214–15222

    Article  Google Scholar 

  24. Kwon SU, Cho YJ, Koo JS, Bae HJ, Lee YS, Hong KS, Lee JH, Kim JS (2005) Cilostazol prevents the progression of the symptomatic intracranial arterial stenosis: the multicenter double-blind placebo-controlled trial of cilostazol in symptomatic intracranial arterial stenosis. Stroke 36:782–786

    Article  CAS  Google Scholar 

  25. Gotoh F, Tohgi H, Hirai S, Terashi A, Fukuuchi Y, Otomo E, Shinohara Y, Itoh E et al (2000) Cilostazol stroke prevention study: a placebo-controlled double-blind trial for secondary prevention of cerebral infarction. J Stroke Cerebrovasc Dis 9(4):147–157

    Article  CAS  Google Scholar 

  26. Netherton SJ, Maurice DH (2005) Vascular endothelial cell cyclic nucleotide phosphodiesterases and regulated cell migration: implications in angiogenesis. Mol Pharmacol 67(1):263–272

    Article  CAS  Google Scholar 

  27. Hori M (2007) The phosphodiesterase 4D gene for early onset ischemic stroke among normotensive patients. Stroke 5(2):436–438

    Google Scholar 

  28. Lum H, Malik AB (1996) Mechanisms of increased endothelial permeability. Can J Physiol Pharmacol 74(7):787–800

    CAS  PubMed  Google Scholar 

  29. Cosin-Tomas M, Antonell A, Llado A, Alcolea D, Fortea J, Ezquerra M, Lleo A, Marti MJ et al (2017) Plasma miR-34a-5p and miR-545-3p as early biomarkers of Alzheimer’s disease: potential and limitations. Mol Neurobiol 54(7):5550–5562

    Article  CAS  Google Scholar 

  30. Baulina N, Kulakova O, Kiselev I, Osmak G, Popova E, Boyko A, Favorova O (2018) Immune-related miRNA expression patterns in peripheral blood mononuclear cells differ in multiple sclerosis relapse and remission. J Neuroimmunol 317:67–76

    Article  CAS  Google Scholar 

  31. Topol A, Zhu S, Hartley BJ, English J, Hauberg ME, Tran N, Rittenhouse CA, Simone A et al (2017) Dysregulation of miRNA-9 in a subset of schizophrenia patient-derived neural progenitor cells. Cell Rep 20(10):2525

    Article  CAS  Google Scholar 

  32. Dweep H, Sticht C, Pandey P, Gretz N (2011) miRWalk – database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J Biomed Inform 44(5):839–847

    Article  CAS  Google Scholar 

  33. Gennarino VA, D'Angelo G, Dharmalingam G, Fernandez S, Russolillo G, Sanges R, Mutarelli M, Belcastro V et al (2012) Identification of microRNA-regulated gene networks by expression analysis of target genes. Genome Res 22(6):1163–1172

    Article  CAS  Google Scholar 

  34. Li J, Zhao Y, Lu Y, Ritchie W, Grau G, Vadas MA, Gamble JR (2016) The poly-cistronic miR-23-27-24 complexes target endothelial cell junctions: differential functional and molecular effects of miR-23a and miR-23b. Mol Ther–Nucleic Acids 5(8):e354

    Article  CAS  Google Scholar 

  35. Cerutti C, Edwards LJ, de Vries HE, Sharrack B, Male DK, Romero IA (2017) MiR-126 and miR-126* regulate shear-resistant firm leukocyte adhesion to human brain endothelium. Sci Rep 7:45284

    Article  CAS  Google Scholar 

  36. Weksler BB, Subileau EA, Perriere N, Charneau P, Holloway K, Leveque M, Tricoire-Leignel H, Nicotra A et al (2005) Blood-brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J 19(13):1872–1874

    Article  CAS  Google Scholar 

  37. Agarwal V, Bell GW, Nam J-W, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. eLife 4:e05005

    Article  Google Scholar 

  38. Kalari KR, Thompson KJ, Nair AA, Tang X, Bockol MA, Jhawar N, Swaminathan SK, Lowe VJ et al (2016) BBBomics-human blood brain barrier transcriptomics hub. Front Neurosci 10:71

    Article  Google Scholar 

  39. Ortega FJ, Mercader JM, Moreno-Navarrete JM, Rovira O, Guerra E, Esteve E, Xifra G, Martínez C et al (2014) Profiling of circulating microRNAs reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization. Diabetes Care 37(5):1375–1383

    Article  CAS  Google Scholar 

  40. Karolina DS, Tavintharan S, Armugam A, Sepramaniam S, Pek SL, Wong MT, Lim SC, Sum CF et al (2012) Circulating miRNA profiles in patients with metabolic syndrome. J Clin Endocrinol Metab 97(12):E2271–E2276

    Article  CAS  Google Scholar 

  41. Wang L, Bao H, Wang KX, Zhang P, Yao QP, Chen XH, Huang K, Qi YX et al (2017) Secreted miR-27a induced by cyclic stretch modulates the proliferation of endothelial cells in hypertension via GRK6. Sci Rep 7:41058

    Article  CAS  Google Scholar 

  42. Erener S, Marwaha A, Tan R, Panagiotopoulos C, Kieffer TJ (2017) Profiling of circulating microRNAs in children with recent onset of type 1 diabetes. JCI Insight 2(4):e89656

    Article  Google Scholar 

  43. Herrera BM, Lockstone HE, Taylor JM, Ria M, Barrett A, Collins S, Kaisaki P, Argoud K et al (2010) Global microRNA expression profiles in insulin target tissues in a spontaneous rat model of type 2 diabetes. Diabetologia 53(6):1099–1109

    Article  CAS  Google Scholar 

  44. Meng S, Cao JT, Zhang B, Zhou Q, Shen CX, Wang CQ (2012) Downregulation of microRNA-126 in endothelial progenitor cells from diabetes patients, impairs their functional properties, via target gene Spred-1. J Mol Cell Cardiol 53(1):64–72

    Article  CAS  Google Scholar 

  45. Nielsen LB, Wang C, Sorensen K, Bang-Berthelsen CH, Hansen L, Andersen ML, Hougaard P, Juul A et al (2012) Circulating levels of microRNA from children with newly diagnosed type 1 diabetes and healthy controls: evidence that miR-25 associates to residual beta-cell function and glycaemic control during disease progression. Exp Diabetes Res 2012:896362

    PubMed  PubMed Central  Google Scholar 

  46. Topakian R, Barrick TR, Howe FA, Markus HS (2010) Blood-brain barrier permeability is increased in normal-appearing white matter in patients with lacunar stroke and leucoaraiosis. J Neurol Neurosurg Psychiatry 81(2):192–197

    Article  CAS  Google Scholar 

  47. Wardlaw JM, Farrall A, Armitage PA, Carpenter T, Chappell F, Doubal F, Chowdhury D, Cvoro V et al (2008) Changes in background blood-brain barrier integrity between lacunar and cortical ischemic stroke subtypes. Stroke 39(4):1327–1332

    Article  Google Scholar 

  48. Urabe T (2013) Cilostazol strengthens barrier integrity in brain endothelial cells. Neurosci Res 33(2):291–307

    Google Scholar 

  49. Liu S, Yu C, Yang F, Paganini-Hill A, Fisher MJ (2012) Phosphodiesterase inhibitor modulation of brain microvascular endothelial cell barrier properties. J Neurol Sci 320(1–2):45–51

    Article  CAS  Google Scholar 

  50. Uchiyama S (2009) Stroke prevention by cilostazol in patients with atherothrombosis: meta-analysis of placebo-controlled randomized trials. J Stroke Cerebrovasc Dis 18(6):482–90

  51. Shi L, Pu J, Xu L, Malaguit J, Zhang J, Chen S (2014) The efficacy and safety of cilostazol for the secondary prevention of ischemic stroke in acute and chronic phases in Asian population- an updated meta-analysis. BMC Neurol 14:251

    Article  Google Scholar 

  52. Liu X, Cheng Y, Zhang S, Lin Y, Yang J, Zhang C (2009) A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ Res 104(4):476–487

    Article  CAS  Google Scholar 

  53. Poliseno L, Tuccoli A, Mariani L, Evangelista M, Citti L, Woods K, Mercatanti A, Hammond S et al (2006) MicroRNAs modulate the angiogenic properties of HUVECs. Blood 108(9):3068–3071

    Article  CAS  Google Scholar 

  54. Zhu N, Zhang D, Chen S, Liu X, Lin L, Huang X, Guo Z, Liu J et al (2011) Endothelial enriched microRNAs regulate angiotensin II-induced endothelial inflammation and migration. Atherosclerosis 215(2):286–293

    Article  CAS  Google Scholar 

  55. Dentelli P, Rosso A, Orso F, Olgasi C, Taverna D, Brizzi MF (2010) microRNA-222 controls neovascularization by regulating signal transducer and activator of transcription 5A expression. Arterioscler Thromb Vasc Biol 30(8):1562–1568

    Article  CAS  Google Scholar 

  56. Urbich C, Kaluza D, Fromel T, Knau A, Bennewitz K, Boon RA, Bonauer A, Doebele C et al (2012) MicroRNA-27a/b controls endothelial cell repulsion and angiogenesis by targeting semaphorin 6A. Blood 119(6):1607–1616

    Article  CAS  Google Scholar 

  57. Zhou Q, Gallagher R, Ufret-Vincenty R, Li X, Olson EN, Wang S (2011) Regulation of angiogenesis and choroidal neovascularization by members of microRNA-23∼27∼24 clusters. Proc Natl Acad Sci 108(20):8287–8292

    Article  CAS  Google Scholar 

  58. Sepramaniam S, Tan J-R, Tan K-S, DeSilva DA, Tavintharan S, Woon F-P, Wang C-W, Yong F-L et al (2014) Circulating microRNAs as biomarkers of acute stroke. Int J Mol Sci 15(1):1418–1432

    Article  Google Scholar 

  59. Sabirzhanov B, Zhao Z, Stoica BA, Loane DJ, Wu J, Borroto C, Dorsey SG, Faden AI (2014) Downregulation of miR-23a and miR-27a following experimental traumatic brain injury induces neuronal cell death through activation of proapoptotic Bcl-2 proteins. J Neurosci 34(30):10055–10071

    Article  Google Scholar 

  60. Sala Frigerio C, Lau P, Salta E, Tournoy J, Bossers K, Vandenberghe R, Wallin A, Bjerke M et al (2013) Reduced expression of hsa-miR-27a-3p in CSF of patients with Alzheimer disease. Neurology 81(24):2103–2106

    Article  CAS  Google Scholar 

  61. Regev K, Paul A, Healy B, von Glenn F, Diaz-Cruz C, Gholipour T, Mazzola MA, Raheja R et al (2016) Comprehensive evaluation of serum microRNAs as biomarkers in multiple sclerosis. Neurol Neurophysiol Neurosci 3(5):e267

    Google Scholar 

  62. Sorensen SS, Nygaard AB, Carlsen AL, Heegaard NHH, Bak M, Christensen T (2017) Elevation of brain-enriched miRNAs in cerebrospinal fluid of patients with acute ischemic stroke. Biomarker Res 5:24

    Article  Google Scholar 

  63. Sorensen SS, Nygaard AB, Nielsen MY, Jensen K, Christensen T (2014) miRNA expression profiles in cerebrospinal fluid and blood of patients with acute ischemic stroke. Transl Stroke Res 5(6):711–718

    Article  Google Scholar 

  64. Dharap A, Bowen K, Place R, Li LC, Vemuganti R (2009) Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. J Cereb Blood Flow Metab 29(4):675–687

    Article  CAS  Google Scholar 

  65. Jeyaseelan K, Lim KY, Armugam A (2008) MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke 39(3):959–966

    Article  CAS  Google Scholar 

  66. Malik R, Dichgans M, A.F. Consortium, H. Cohorts for, C. Aging Research in Genomic Epidemiology, C. International Genomics of Blood Pressure, I. Consortium, Starnet, G. BioBank Japan Cooperative Hospital, C. Consortium, E.-C. Consortium, E.P.-I. Consortium, C. International Stroke Genetics, M. Consortium, C.C. Neurology Working Group of the, N.S.G. Network, U.K.Y.L.D. Study, M. Consortium, M. Consortium (2018) Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat Genet 50(4):524–537

    Article  CAS  Google Scholar 

  67. Daige CL, Wiggins JF, Priddy L, Nelligan-Davis T, Zhao J, Brown D (2014) Systemic delivery of a miR34a mimic as a potential therapeutic for liver cancer. Mol Cancer Ther 13(10):2352–2360

    Article  CAS  Google Scholar 

  68. Gebert LFR, Rebhan MAE, Crivelli SEM, Denzler R, Stoffel M, Hall J (2014) Miravirsen (SPC3649) can inhibit the biogenesis of miR-122. Nucleic Acids Res 42(1):609–621

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Herlev Research Council. S.Y. is supported by the Department of Neurology, Herlev University Hospital. Running costs are supported by the Aase and Ejnar Danielsens Foundation, the Fonden for Lægevidenskabens Fremme, the Novo Nordic Foundation, and Direktør Jacob Madsen og Hustru Olga Madsens Fond.

Author information

Authors and Affiliations

Authors

Contributions

Study concept and design: CK, AHM, SY, SK, and FP; acquisition of data: SK, AHM and SY; analysis and interpretation of data: SY, SK, CK, FP and BB; drafting of the manuscript: SY; critical revision of the manuscript for important intellectual content: SY, SK, CK, FP, AHM, and BB; approval of final manuscript: CK, SY, SK, FP, BB and AHM; obtained funding: SY and CK; study supervision, CK, FP and BB.

Corresponding author

Correspondence to C. Kruuse.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Cyclic nucleotides are essential in endothelial cell function.

• The cAMP degrading phosphodiesterase 3 (PDE3) is a target in stroke treatment.

• PDE3A is expressed in cerebral microvascular endothelial cells.

• PDE3A-associated miRNAs likely regulate cerebral microvascular endothelial function.

• PDE3A expression is reduced by specific miRNAs important for endothelial function.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasmeen, S., Kaur, S., Mirza, A.H. et al. miRNA-27a-3p and miRNA-222-3p as Novel Modulators of Phosphodiesterase 3a (PDE3A) in Cerebral Microvascular Endothelial Cells. Mol Neurobiol 56, 5304–5314 (2019). https://doi.org/10.1007/s12035-018-1446-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1446-5

Keywords

Navigation