Skip to main content

Advertisement

Log in

Electrospun Poly-ε-Caprolactone (PCL)/Dicalcium Phosphate Dihydrate (DCPD) Composite Scaffold for Tissue Engineering Application

  • Original paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Recently electrospun scaffolds show excellent response in cell adhesion, growth, and tissue healing in comparison with other techniques. So in this study, PCL and PCL/DCPD scaffolds were designed and prepared with electrospinning. The electrospun scaffolds were characterized by scanning electron microscope with X-ray elemental analysis, atomic force microcopy, differential scanning calorimetry, and contact angle analysis for optimizing the effective parameters. Fiber formation with uniform diameter and bead-free structure was obtained. Scaffold surface roughness increased from 100 nm for PCL to 440 nm for PCL/DCPD. DSC analysis showed the effects of DCPD on thermal stability of composite scaffold and the results of contact angle evaluation indicate improved hydrophilicity and ability of water absorption of PCL/DCPD composite fibers as compared to PCL fibers. MTT assay indicated lack of toxicity for human gingival fibroblast (HGF) cells after cell seeding on scaffold. Also, the composite scaffold can improve cell viability by helping their growth on its surface. So it can be concluded that by engineering the electrospinning parameters we can fabricate a PCL/DCPD composite scaffold for tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ghiasi, M. S., Chen, J., Vaziri, A., Rodriguez, E. K., & Nazarian, A. (2017). Bone fracture healing in mechanobiological modeling: A review of principles and methods. Bone Reports, 6, 87–100. https://doi.org/10.1016/j.bonr.2017.03.002.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Carpinteri, A., Berto, F., Fortese, G., Ronchei, C., Scorza, D., & Vantadori, S. (2017). Modified two-parameter fracture model for bone. Engineering Fracture Mechanics, 174, 44–53. https://doi.org/10.1016/j.engfracmech.2016.11.002.

    Article  Google Scholar 

  3. Wang, W., & Yeung, K. (2017). Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioactive Materials, 2(4), 224–247. https://doi.org/10.1016/j.bioactmat.2017.05.007.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nasiri, F., Ajeli, S., Semnani, D., Jahanshahi, M., & Emadi, R. (2018). Design, fabrication and structural optimization of tubular Carbon/Kevlar®/PMMA/Graphene nanoplates composite for bone fixation prosthesis. Biomedical Materials. https://doi.org/10.1088/1748-605X/aab8d6.

    Article  PubMed  Google Scholar 

  5. Tavakol, S., Nikpour, M. R., Amani, A., Soltani, M., Rabiee, S. M., Rezayat, S. M., & Chen, P. (2013). Bone regeneration based on nano-hydroxyapatite and hydroxyapatite/chitosan nanocomposites: An in vitro and in vivo comparative study. Journal of Nanoparticle Research, 15(1), 1373–1378. https://doi.org/10.1007/s11051-012-1373-8.

    Article  CAS  Google Scholar 

  6. Hollister, S. J. (2005). Porous scaffold design for tissue engineering. Nature Materials, 4, 518–524. https://doi.org/10.1038/nmat1421.

    Article  CAS  PubMed  Google Scholar 

  7. Leung, V., & Ko, F. (2011). Biomedical applications of nanofibers. Polymers for Advanced Technologies, 22, 350–365. https://doi.org/10.1002/pat.1813.

    Article  CAS  Google Scholar 

  8. Beachley, V., & Wen, X. (2010). Polymer nanofibrous structures: Fabrication, biofunctionalization, and cell interactions. Progress in Polymer Science, 35, 868–892. https://doi.org/10.1016/j.progpolymsci.2010.03.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huang, Z.M., Zhang, Y.Z., Kotaksi, M., & Ramakrishna, S. (2003). A review on polymer nanofibers by electrospinning and their application in nanocomposites. Composites Science and Technology, 63, 2223–2253. https://doi.org/10.1016/S0266-3538(03)00178-7.

    Article  CAS  Google Scholar 

  10. Teo, W. E., & Ramakrishna, S. (2006). A review on electrospinning design and nanofiber assemblies. Nanotechnology, 17, 89–106. https://doi.org/10.1088/0957-4484/17/14/R01.

    Article  CAS  Google Scholar 

  11. Villarreal-Gómez, L. J., Cornejo-Bravo, J. M., Graziano, R. V., & Grande, D. (2016). Electrospinning as a powerful technique for biomedical applications: A critically selected survey. Journal of Biomaterials Science, Polymer Edition, 27, 157–176. https://doi.org/10.1080/09205063.2015.1116885.

    Article  CAS  Google Scholar 

  12. Liu, J., & Wang, P. (2017). Electrospinning based functional nanofibers for biomedical applications. Journal of Biomaterials and Tissue Engineering, 7(7), 511–518. https://doi.org/10.1166/jbt.2017.1605.

    Article  Google Scholar 

  13. Gunatillake, P. A., Mayadunne, R., & Adhikari, R. (2006). Recent developments in biodegradable synthetic polymers. Biotechnology Annual Review., 12, 301–347. https://doi.org/10.1016/S1387-2656(06)12009-8.

    Article  CAS  PubMed  Google Scholar 

  14. Rahmani-Monfard, K., Fathi, A., & Rabiee, S. M. (2016). Three-dimensional laser drilling of polymethyl methacrylate (PMMA) scaffold used for bone regeneration. The International Journal of Advanced Manufacturing Technology, 84, 2649–2657. https://doi.org/10.1007/s00170-015-7917-1.

    Article  Google Scholar 

  15. Siddiqui, N., Asawa, S., Birru, B., Baadhe, R., & Rao, S. (2018). PCL–based composite scaffold matrices for tissue engineering. Molecular Biotechnology, 60, 506–532. https://doi.org/10.1007/s12033-018-0084-5.

    Article  CAS  PubMed  Google Scholar 

  16. Cipitria, A., Skelton, A., Dargaville, T. R., Dalton, P. D., & Hutmacher, D. W. (2011). Design, fabrication and characterization of PCL electrospun scaffolds—a review. Journal Materials Chemistry, 21, 9419–9453. https://doi.org/10.1039/C0JM04502K.

    Article  CAS  Google Scholar 

  17. Rabiee, S. M. (2011). Bioactive ceramics as bone morphogenetic proteins carriers. In R. Pignatello (Ed.), Biomaterials applications for nanomedicine (pp. 1–15), London: InTech.

    Google Scholar 

  18. Rabiee, S. M., Moztarzadeh, F., Salimi-Kenari, H., Solati-Hashjin, M., & Mortazavi, S. M. J. (2008). Study of biodegradable ceramic bone graft substitute. Advances in Applied Ceramics, 107, 199–202. https://doi.org/10.1179/174367607X227972.

    Article  CAS  Google Scholar 

  19. Zhao, X., Lui, Y. S., Choo, C. K., Sow, W. T., Huang, C. L., Woei, N. K., Tan, L. P., & Loo, J. S. C. (2015). Calcium phosphate coated Keratin–PCL scaffolds for potential bone tissue regeneration. Materials Science and Engineering: C, 49, 746–753. https://doi.org/10.1016/j.msec.2015.01.084.

    Article  CAS  Google Scholar 

  20. Chuanglong, H., Peter, Xb,J. X.,. M. (2014). Calcium phosphate deposition rate, structure and osteoconductivity on electrospun poly(l-lactic acid) matrix using electrodeposition or simulated body fluid incubation. Acta Biomaterialia. https://doi.org/10.1016/j.actbio.2013.08.041.

    Article  Google Scholar 

  21. Yang, F., Wolke, J. G. C., & Jansen, J. A. (2008). Biomimetic calcium phosphate coating on electrospun poly(ɛ-caprolactone) scaffolds for bone tissue engineering. Chemical Engineering Journal, 137, 154–161. https://doi.org/10.1016/j.cej.2007.07.076.

    Article  CAS  Google Scholar 

  22. Kouhi, M., Morshed, M., Varshosaz, J., & Fathi, M. H. (2013). Poly(ε-caprolactone) incorporated bioactive glass nanoparticles and simvastatin nanocomposite nanofibers: Preparation, characterization and in vitro drug release for bone regeneration applications. Chemical Engineering Journal, 228, 1057–1065. https://doi.org/10.1016/j.cej.2013.05.091.

    Article  CAS  Google Scholar 

  23. Zong, H. X., Xia, X., Liang, Y. R., Dai, S. Y., Alsaedi, A., Hayat, T., Kong, F. T., & Pan, J. H. (2018). Designing function-oriented artificial nanomaterials and membranes via electrospinning and electrospraying techniques. Materials Science and Engineering: C, 92, 1075–1091. https://doi.org/10.1016/j.msec.2017.11.007.

    Article  CAS  Google Scholar 

  24. Wang, X. F., Ding, B., & Li, B., Y (2013). Biomimetic electrospun nanofibrous structures for tissue engineering. Materials Today, 16(6), 229–241. https://doi.org/10.1016/j.mattod.2013.06.005.

    Article  CAS  PubMed  Google Scholar 

  25. Wan, C., & Chen, B. (2011). Poly(ε-caprolactone)/graphene oxide biocomposites: Mechanical properties and bioactivity. Biomedical Materials, 6, 1–8. https://doi.org/10.1088/1748-6041/6/5/055010.

    Article  CAS  Google Scholar 

  26. Islam,M. D. S., &Karima,M. R.(2010).Fabrication and characterization of poly(vinyl alcohol)/alginate blend nanofibers by electrospinning method. Colloids and Surfaces A: Physicochem, Engineering Aspects,366,135–140.https://doi.org/10.1016/j.colsurfa.2010.05.038.

    Article  CAS  Google Scholar 

  27. Guoyou, H., Fei, L., Xin, Z., Yufei, M., Yuhui, L., Min, L., Guorui, J., Tian, J. L., Guy, M., Genin, & Feng, X. (2017). Functional and biomimetic materials for engineering of the three-dimensional cell microenvironment. Chemical Reviews, 117, 12764–12850. https://doi.org/10.1021/acs.chemrev.7b00094.

    Article  CAS  Google Scholar 

  28. Das, R. K., Gocheva, V., Hammink, R., Zouani, O. F., & Rowan, A. E. (2016). Stress-stiffening-mediated stem-cell commitment switch in soft responsive hydrogels. Nature Materials, 15, 318–325.

    Article  CAS  PubMed  Google Scholar 

  29. Wang, H., Abhilash, A. S., Christopher, C., Wells, S., R. G., & Shenoy, V. B. (2014). Long-range force transmission in fibrous matrices enabled by tension-driven alignment of fibers. Biophysical Journal, 107, 2592–2603. https://doi.org/10.1016/j.bpj.2014.09.044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Babaei, B., Davarian, A., Lee, S. L., Pryse, K. M., McConnaughey, W.B., Elson, E. L., & Genin, G. M. (2016). Remodeling by fibroblasts. Acta Biomaterialia, 37, 28–37. https://doi.org/10.1016/j.actbio.2016.03.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayed Mahmood Rabiee.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taghavi, M.A., Rabiee, S.M., Jahanshahi, M. et al. Electrospun Poly-ε-Caprolactone (PCL)/Dicalcium Phosphate Dihydrate (DCPD) Composite Scaffold for Tissue Engineering Application. Mol Biotechnol 61, 345–354 (2019). https://doi.org/10.1007/s12033-019-00168-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-019-00168-4

Keywords

Navigation