Skip to main content

Advertisement

Log in

Pro-Neoplastic Effects of Amphiregulin in Colorectal Carcinogenesis

  • Original Research
  • Published:
Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

Purpose

Epidermal growth factor (EGF) family plays critical roles in intestinal epithelial growth and transformation. Amphiregulin (AREG) is a member of the EGF family, and has been suggested to be more important to tumor versus normal growth. The precise roles of AREG in colorectal carcinogenesis have not been thoroughly elucidated.

Methods

AREG expression was analyzed in colon cancer specimens using immunohistochemistry. Genetically disruption of AREG in APC min/+ mouse was achieved by crossbreeding AREG knockout mouse with APC min/+ mice. Knockdown AREG expression was accomplished by using plasmid-based RNA interference. Growth-stimulatory effects of AREG were determined using cell co-culture systems.

Results

AREG was expressed in both epithelial and stromal compartments in human colon cancer; however, it was regulated by different mechanisms. AREG was predominantly regulated at transcriptional level in colon cancer cells while both transcriptional and post-transcriptional mechanisms were involved in colon cancer derived myofibroblasts. Functionally, knockout of AREG strongly reduced tumorigenicity in APC min/+ mice. Immunohistochemistry demonstrated the coordinate expression of AREG, EGF receptor activity, and cell proliferation marker in APC min/+ mouse adenoma, indicating the growth-stimulatory function of AREG signaling in tumor development. Furthermore, we demonstrated that AREG may stimulate tumor cell growth through both autocrine and paracrine pathways in cell culture models. Knockdown of AREG impaired the ability of anchorage-independent growth of transformed intestinal epithelial cells. On the other hand, myofibroblast-produced AREG stimulated the growth of colon cancer cells when co-cultured in extracellular matrix.

Conclusions

AREG plays pro-neoplastic roles in colorectal carcinogenesis and may be targeted for colon cancer prevention and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Moser AR, Pitot HC, Dove WF. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science. 1990;247:322–4.

    Article  PubMed  CAS  Google Scholar 

  2. Groden J, Thliveris A, Samowitz W, Carlson M, Gelbert L, Albertsen H, et al. Identification and characterization of the familial adenomatous polyposis coli gene. Cell. 1991;66:589–600.

    Article  PubMed  CAS  Google Scholar 

  3. Nishisho I, Nakamura Y, Miyoshi Y, Miki Y, Ando H, Horii A, et al. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science. 1991;253:665–9.

    Article  PubMed  CAS  Google Scholar 

  4. Kinzler WK, Vogelstein B. Lessons from hereditary colorectal cancer. Cell. 1996;87:159–70.

    Article  PubMed  CAS  Google Scholar 

  5. Karnes Jr WE, Weller SG, Adjei PN, Kottke TJ, Glenn KS, Gores GJ, et al. Inhibition of epidermal growth factor receptor kinase induces protease-dependent apoptosis in human colon cancer cells. Gastroenterology. 1998;114:930–9.

    Article  PubMed  CAS  Google Scholar 

  6. Roh H, Pippin J, Drebin JA. Down-regulation of HER2/neu expression induces apoptosis in human cancer cells that overexpress HER2/neu. Cancer Res. 2000;60:560–5.

    PubMed  CAS  Google Scholar 

  7. Oldham SM, Cox AD, Reynolds ER, Sizemore NS, Coffey RJJ, Der CJ. Ras, but not Src, transformation of RIE-1 epithelial cells is dependent on activation of the mitogen-activated protein kinase cascade. Oncogene. 1998;16:2565–73.

    Article  PubMed  CAS  Google Scholar 

  8. Sheng H, Shao H, DuBois RN. Akt/PKB activity is required for Ha-Ras-mediated transformation of intestinal epithelial cells. J Biol Chem. 2001;276:14498–504.

    PubMed  CAS  Google Scholar 

  9. Podolsky DK. Peptide growth factors in gastrointestinal mucosal growth. In: Johnson LR, editor. Physiology of the gastrointestinal tract. 3rd ed. New York: Raven; 1994. p. 129–67.

    Google Scholar 

  10. Jones MK, Tomikawa M, Mohajer B, Tarnawski AS. Gastrointestinal mucosal regeneration: role of growth factors. Front Biosci. 1999;4:D303–9.

    PubMed  CAS  Google Scholar 

  11. Polk DB, Barnard JA. Hormones and growth factors in intestinal development. In: Sanderson IR, Walker A, editors. Development of the gastrointestinal tract. Hamilton, Ontario, Canada: Decker; 1999. p. 37–55.

    Google Scholar 

  12. Helbling D, Borner M. Successful challenge with the fully human EGFR antibody panitumumab following an infusion reaction with the chimeric EGFR antibody cetuximab. Ann Oncol. 2007;18:963–4.

    Article  PubMed  CAS  Google Scholar 

  13. Allegra CJ, Jessup JM, Somerfield MR, Hamilton SR, Hammond EH, Hayes DF, et al. American Society of Clinical Oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy. J Clin Oncol. 2009;27:2091–6.

    Article  PubMed  Google Scholar 

  14. Ciardiello F, Kim N, Saeki T, Dono R, Persico MG, Plowman GD, et al. Differential expression of epidermal growth factor-related proteins in human colorectal tumors. Proc Natl Acad Sci U S A. 1991;88:7792–6.

    Article  PubMed  CAS  Google Scholar 

  15. Shao J, Lee SB, Guo H, Evers BM, Sheng H. Prostaglandin E2 stimulates the growth of colon cancer cells via induction of amphiregulin. Cancer Res. 2003;63:5218–23.

    PubMed  CAS  Google Scholar 

  16. Berasain C, Garcia-Trevijano ER, Castillo J, Erroba E, Lee DC, Prieto J, et al. Amphiregulin: an early trigger of liver regeneration in mice. Gastroenterology. 2005;128:424–32.

    Article  PubMed  CAS  Google Scholar 

  17. Chang SH, Ai Y, Breyer RM, Lane TF, Hla T. The prostaglandin E2 receptor EP2 is required for cyclooxygenase 2-mediated mammary hyperplasia. Cancer Res. 2005;65(11):4496–9.

    Article  PubMed  CAS  Google Scholar 

  18. Shao J, Sheng H. Amphiregulin promotes intestinal epithelial regeneration: roles of intestinal subepithelial myofibroblasts. Endocrinology. 2010;151:3728–37.

    Article  PubMed  CAS  Google Scholar 

  19. Yamada M, Ichikawa Y, Yamagishi S, Momiyama N, Ota M, Fujii S, et al. Amphiregulin is a promising prognostic marker for liver metastases of colorectal cancer. Clin Cancer Res. 2008;14:2351–6.

    Article  PubMed  CAS  Google Scholar 

  20. Prescott SM, White RL. Self-promotion? Intimate connections between APC and prostaglandin H synthase-2. Cell. 1996;87:783–6.

    Article  PubMed  CAS  Google Scholar 

  21. Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Van De Putte LB, et al. Cyclooxygenase in biology and disease. FASEB J. 1998;12:1063–73.

    PubMed  CAS  Google Scholar 

  22. Wang D, Mann JR, DuBois RN. The role of prostaglandins and other eicosanoids in the gastrointestinal tract. Gastroenterology. 2005;128:1445–61.

    Article  PubMed  CAS  Google Scholar 

  23. Shao J, Sheng GG, Mifflin RC, Powell DW, Sheng H. Roles of myofibroblasts in prostaglandin E2-stimulated intestinal epithelial proliferation and angiogenesis. Cancer Res. 2006;66:846–55.

    Article  PubMed  CAS  Google Scholar 

  24. Luetteke NC, Qiu TH, Fenton SE, Troyer KL, Riedel RF, Chang A, et al. Targeted inactivation of the EGF and amphiregulin genes reveals distinct roles for EGF receptor ligands in mouse mammary gland development. Development. 1999;126:2739–50.

    PubMed  CAS  Google Scholar 

  25. Sheng H, Shao J, Townsend Jr CM, Evers BM. Phosphatidylinositol 3-kinase mediates proliferative signals in intestinal epithelial cells. Gut. 2003;52:1472–8.

    Article  PubMed  CAS  Google Scholar 

  26. Sheng GG, Shao J, Sheng H, Hooton EB, Isakson PC, Morrow JD, et al. A selective cyclooxygenase-2 inhibitor suppresses the growth of H-ras transformed rat intestinal epithelial cells. Gastroenterology. 1997;113:1883–91.

    Article  PubMed  CAS  Google Scholar 

  27. Shao J, Sheng H. Prostaglandin E2 induces the expression of IL-1 > {alpha} in colon cancer cells. J Immunol. 2007;178:4097–103.

    PubMed  CAS  Google Scholar 

  28. Adegboyega PA, Mifflin RC, DiMari JF, Saada JI, Powell DW. Immunohistochemical study of myofibroblasts in normal colonic mucosa, hyperplastic polyps, and adenomatous colorectal polyps. Arch Pathol Lab Med. 2002;126:829–36.

    PubMed  Google Scholar 

  29. De Luca A, Arra C, D’Antonio A, Casamassimi A, Losito S, Ferraro P, et al. Simultaneous blockage of different EGF-like growth factors results in efficient growth inhibition of human colon carcinoma xenografts. Oncogene. 2000;19:5863–71.

    Article  PubMed  Google Scholar 

  30. Oshima M, Murai N, Kargman S, Arguello M, Luk P, Kwong E, et al. Chemoprevention of intestinal polyposis in the Apcdelta716 mouse by rofecoxib, a specific cyclooxygenase-2 inhibitor. Cancer Res. 2001;61:1733–40.

    PubMed  CAS  Google Scholar 

  31. Reuter BK, Zhang XJ, Miller MJ. Therapeutic utility of aspirin in the ApcMin/+ murine model of colon carcinogenesis. BMC Cancer. 2002;2:19.

    Article  PubMed  Google Scholar 

  32. Shao J, Evers BM, Sheng H. Prostaglandin E2 synergistically enhances receptor tyrosine kinase-dependent signaling system in colon cancer cells. J Biol Chem. 2004;279:14287–93.

    Article  PubMed  CAS  Google Scholar 

  33. Johansson CC, Yndestad A, Enserink JM, Ree AH, Aukrust P, Tasken K. The epidermal growth factor-like growth factor amphiregulin is strongly induced by the adenosine 3′,5′-monophosphate pathway in various cell types. Endocrinology. 2004;145:5177–84.

    Article  PubMed  CAS  Google Scholar 

  34. Lee SB, Huang K, Palmer R, Truong VB, Herzlinger D, Kolquist KA, et al. The Wilms tumor suppressor WT1 encodes a transcriptional activator of amphiregulin. Cell. 1999;98:663–73.

    Article  PubMed  CAS  Google Scholar 

  35. Guhaniyogi J, Brewer G. Regulation of mRNA stability in mammalian cells. Gene. 2001;265:11–23.

    Article  PubMed  CAS  Google Scholar 

  36. Caput D, Beutler B, Hartog K, Thayer R, Brown-Shimer S, Cerami A. Identification of a common nucleotide sequence in the 3′-untranslated region of mRNA molecules specifying inflammatory mediators. Proc Natl Acad Sci USA. 1986;83:1670–4.

    Article  PubMed  CAS  Google Scholar 

  37. Sirenko OI, Lofquist AK, DeMaria CT, Morris JS, Brewer G, Haskill JS. Adhesion-dependent regulation of an A+U rich element binding activity associated with AUF1. Mol Cell Biol. 1997;17:3898–906.

    PubMed  CAS  Google Scholar 

  38. Sachs AB. Messenger RNA degradation in eukaryotes. Cell. 1993;74:413–21.

    Article  PubMed  CAS  Google Scholar 

  39. Sizemore N, Cox AD, Barnard JA, Oldham SM, Reynolds ER, Der CJ, et al. Pharmacological inhibition of Ras-transformed epithelial cell growth is linked to down-regulation of epidermal growth factor-related peptides. Gastroenterology. 1999;117:567–76.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Grant number: DK086558 from National Institute of Health, USA.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongmiao Sheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guzman, M.J., Shao, J. & Sheng, H. Pro-Neoplastic Effects of Amphiregulin in Colorectal Carcinogenesis. J Gastrointest Canc 44, 211–221 (2013). https://doi.org/10.1007/s12029-012-9474-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12029-012-9474-2

Keywords

Navigation