Skip to main content
Log in

Hydrothermal Carbonization of Microalgae (Chlorococcum sp.) for Porous Carbons With High Cr(VI) Adsorption Performance

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Porous carbon adsorbents were prepared from microalgae (Chlorococcum sp.) via directly hydrothermal carbonization coupled with KOH or NH3 activation for Cr(VI) adsorption. KOH-activated porous carbons exhibit high Cr(VI) adsorption capacities than those obtained via NH3 modification (370.37 > 95.70 mg/g). The superior Cr(VI) adsorption capacity is due to high surface areas (1784 m2/g) and pore volumes of porous carbon with mesoporous and macroporous structures. The Cr(VI) adsorption result was well fitted to the Langmuir model, showing that the removal of Cr(VI) was attributed to the monolayer adsorption of activity site on carbon surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Minami, E., & Saka, S. (2005). Biomass resources present in Japan—annual quantities grown, unused and wasted. Biomass and Bioenergy, 29(5), 310–320.

    Article  Google Scholar 

  2. Gupta, R. B., & Demirbas, A. (2010). Gasoline, diesel and ethanol biofuels from grasses and plants. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  3. Azar, C., Lindgren, K., Larson, E., & Möllersten, K. (2006). Carbon capture and storage from fossil fuels and biomass—costs and potential role in stabilizing the atmosphere. Climatic Change, 74(1-3), 47–79.

    Article  CAS  Google Scholar 

  4. Sevilla, M., Macia-Agullo, J. A., & Fuertes, A. B. (2011). Hydrothermal carbonization of biomass as a route for the sequestration of CO2: chemical and structural properties of the carbonized products. Biomass & Bioenergy, 35(7), 3152–3159.

    Article  CAS  Google Scholar 

  5. Liu, W. J., Zeng, F. X., Jiang, H., & Zhang, X. S. (2011). Preparation of high adsorption capacity bio-chars from waste biomass. Bioresource Technology, 102(17), 8247–8252.

    Article  CAS  PubMed  Google Scholar 

  6. Libra, J. A., Ro, K. S., & Kammann, C. (2011). Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels, 2(1), 89–124.

    Article  Google Scholar 

  7. Sevilla, M., & Fuertes, A. B. (2009). Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chemistry, 15(16), 4195–4203.

    Article  CAS  PubMed  Google Scholar 

  8. Sevilla, M., & Fuertes, A. B. (2009). The production of carbon materials by hydrothermal carbonization of cellulose. Carbon, 47(9), 2281–2289.

    Article  CAS  Google Scholar 

  9. Titirici, M. M., Thomas, A., & Antonietti, M. (2007). Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem? New Journal of Chemistry, 31(6), 787–788.

    Article  CAS  Google Scholar 

  10. Kumar, S., Loganathan, V. A., Gupta, R. B., & Barnett, M. O. (2011). An assessment of U(VI) removal from groundwater using biochar produced from hydrothermal carbonization. Journal of Environment Management, 92(10), 2504–2512.

    Article  CAS  Google Scholar 

  11. Liu, Z. G., & Zhang, F. S. (2009). Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass. Journal of Hazardous Materials, 167(1–3), 933–939.

    Article  CAS  PubMed  Google Scholar 

  12. Liu, Z. G., & Zhang, F. S. (2011). Removal of copper (II) and phenol from aqueous solution using porous carbons derived from hydrothermal chars. Desalination, 267(1), 101–106.

    Article  CAS  Google Scholar 

  13. Kumar, S., Kothari, U., Lee, Y. Y., & Gupta, R. B. (2011). Hydrothermal pretreatment of switchgrass and corn stover for production of ethanol and carbon microspheres. Biomass & Bioenergy, 35(2), 956–968.

    Article  CAS  Google Scholar 

  14. Zhu, N., Yan, T., Qiao, J., & Cao, H. (2016). Adsorption of arsenic, phosphorus and chromium by bismuth impregnated biochar: adsorption mechanism and depleted adsorbent utilization. Chemosphere, 164, 32–40.

    Article  CAS  PubMed  Google Scholar 

  15. Cao, Y. H., Huang, J. N., Li, Y. H., Qiu, S., Liu, J. R., Khasanov, A., Khan, M. A., Young, D. P., Peng, F., Cao, D. P., Peng, X. F., Hong, K. L., & Guo, Z. H. (2016). One-pot melamine derived nitrogen doped magnetic carbon nanoadsorbents with enhanced chromium removal. Carbon, 109, 640–649.

    Article  CAS  Google Scholar 

  16. Alaerts, G. J., Jitjaturunt, V., & Kelderman, P. (1989). Use of coconut shell-based activated carbon for chromium(VI) removal. Water Science Technology, 20, 1701–1704.

    Article  Google Scholar 

  17. Dantas, T. N., Neto, A. A. D., & Moura, M. C. (2001). Removal of chromium from aqueous solutions by diatomite treated with microemulsion. Water Research, 35(9), 2219–2224.

    Article  CAS  PubMed  Google Scholar 

  18. Liu, M., Zhang, H., Zhang, X., Deng, Y., Liu, W., & Zhan, H. (2001). Removal and recovery of chromium(III) from aqueous solutions by a spheroidal cellulose adsorbent. Water Environment Research, 73(3), 322–328.

    Article  CAS  PubMed  Google Scholar 

  19. Lee, C. G., Lee, S., Park, J. A., Park, C., Lee, S. J., Kim, S. B., An, B., Yun, S. T., Lee, S. H., & Choi, J. W. (2017). Removal of copper, nickel and chromium mixtures from metal plating wastewater by adsorption with modified carbon foam. Chemosphere, 166, 203–211.

    Article  CAS  PubMed  Google Scholar 

  20. Monser, L., & Adhoum, N. (2002). Modified activated carbon for the removal of copper, zinc, chromium and cyanide from wastewater. Separation and Purification Technology, 26(2-3), 137–146.

    Article  CAS  Google Scholar 

  21. Singh, J., & Cu, S. (2010). Commercialization potential of microalgae for biofuels production. Renewable & Sustainable Energy Reviews, 14(9), 2596–2610.

    Article  CAS  Google Scholar 

  22. Demirbas, A., & Demirbas, M. F. (2011). Importance of algae oil as a source of biodiesel. Energy Conversion and Management, 52(1), 163–170.

    Article  Google Scholar 

  23. Wang, J. J., Tan, Z. C., Zhu, C. C., Miao, G., Kong, L. Z., & Sun, Y. H. (2016). One-pot catalytic conversion of microalgae (Chlorococcum sp.) into 5-hydroxymethylfurfural over the commercial H-ZSM-5 zeolite. Green Chemistry, 18(2), 452–460.

    Article  CAS  Google Scholar 

  24. Miao, G., Zhu, C. C., Wang, J. J., Tan, Z. C., Wang, L., Liu, J. L., Kong, L. Z., & Sun, Y. H. (2015). Efficient one-pot production of 1,2-propanediol and ethylene glycol from microalgae (Chlorococcum sp.) in water. Green Chemistry, 17(4), 2538–2544.

    Article  CAS  Google Scholar 

  25. Falco, C., Sevilla, M., White, R. J., Rothe, R., & Titirici, M. M. (2012). Renewable nitrogen-doped hydrothermal carbons derived from microalgae. ChemSusChem, 5(9), 1834–1840.

    Article  CAS  PubMed  Google Scholar 

  26. Sevilla, M., Gu, W., Falco, C., Titirici, M. M., Fuertes, A. B., & Yushin, G. (2014). Hydrothermal synthesis of microalgae-derived microporous carbons for electrochemical capacitors. Journal of Power Sources, 267, 26–32.

    Article  CAS  Google Scholar 

  27. Heilmann, S. M., Davis, H. T., Jader, L. R., Lefebvre, P. A., Sadowsky, M. J., Schendel, F. J., von Keitz, M. G., & Valentas, K. J. (2010). Hydrothermal carbonization of microalgae. Biomass & Bioenergy, 34(6), 875–882.

    Article  CAS  Google Scholar 

  28. Luo, H., Zhu, C. C., Tan, Z. C., Bao, L. W., Wang, J. J., Miao, G., Kong, L. Z., & Sun, Y. H. (2016). Preparation of N-doped activated carbons with high CO2 capture performance from microalgae (Chlorococcum sp.). RSC Advances, 6(45), 38724–38730.

    Article  CAS  Google Scholar 

  29. Baláž, M., Bujňáková, Z., Baláž, P., Zorkovska, A., Dankova, Z., & Briancin, J. (2015). Adsorption of cadmium(II) on waste biomaterial. Journal of Colloid Interface Science, 454, 121–133.

    Article  CAS  PubMed  Google Scholar 

  30. Shang, J. G., Pi, J. C., Zong, M. Z., Wang, Y. R., Li, W. H., & Liao, Q. H. (2016). Chromium removal using magnetic biochar derived from herb-residue. Journal of the Taiwan Institute of Chemical Engineers., 68, 289–294.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge financial supports provided by the National Natural Science Foundation of China (21406255), the Shanghai Science and Technology Committee (16dz1207200), and the Youth Innovation Promotion Association CAS (2015231).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingzhao Kong.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Liu, C., Zan, Y. et al. Hydrothermal Carbonization of Microalgae (Chlorococcum sp.) for Porous Carbons With High Cr(VI) Adsorption Performance. Appl Biochem Biotechnol 186, 414–424 (2018). https://doi.org/10.1007/s12010-018-2752-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2752-0

Keywords

Navigation