Skip to main content
Log in

Utilization of Plant Dietary Fibers to Reinforce Low-Calorie Dairy Dessert Structure

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Effect of plant fibers, carrageenan, and starch concentration on mechanical properties and syneresis measurements of low-calorie dairy desserts was studied simultaneously using the response surface methodology. Apple, bamboo, inulin, wheat, and psyllium fibers were tested individually, through five distinct experimental designs. Results were compared to a regular dairy dessert, formulated with sugar and whole milk, and a low-calorie formulation with no added fiber. Diet dessert with no added fiber presented higher syneresis and impaired mechanical properties as compared to regular formulation. Results showed that carrageenan, starch, and fibers played distinct roles in compensating the reduction observed on the syneresis test and mechanical properties of low-calorie desserts. While carrageenan and starch showed higher influence on reducing gel syneresis, fiber addition decreased the negative effect on mechanical properties resulting from the fat/sugar removal of the diet formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguilera, J. M., & Stanley, D. W. (1999). Food structuring. Microstructural principles of food processing and engineering. Maryland, USA: Aspen Publishers.

    Google Scholar 

  • Appleqvist, I. A. M., Cochet-Broch, M., Poelman, A. A. M., & Day, L. (2015). Morphologies, volume fraction and viscosity of cell wall particle dispersions particle related to sensory perception. Food Hydrocolloids, 44, 198–207.

    Article  Google Scholar 

  • Auffret, A., Ralet, M. C., Guillon, F., Barry, J. L., & Thibault, J. F. (1994). Effect of grinding and experimental conditions on the measurement of hydration properties of dietary fibers. Lebensmittel Wissenschaft-und-Technologie, 27, 166–172.

    Article  CAS  Google Scholar 

  • Casiraghi, E. M., Bagley, E. B., & Christianson, D. D. (1985). Behavior of mozzarella, cheddar and processed cheese spread in lubricated and bonded uniaxial compression. Journal of Texture Studies, 16, 281–301.

    Article  Google Scholar 

  • Chang, Y. H., Lim, S. T., & Yoo, B. (2004). Dynamic rheology of corn starch–sugar composites. Journal of Food Engineering, 64, 521–527.

    Article  Google Scholar 

  • Chan, J. K. C., & Wypyszyk, V. A. (1988). Forgotten natural dietary fiber: psyllium mucilloid. Cereal Food. World, 33, 919–922.

    Google Scholar 

  • Charalampopoulos, D., & Rastall, R. A. (2012). Prebiotics in foods. Current Opinion in Biotechnology, 23, 187–191.

    Article  CAS  Google Scholar 

  • Chater, P. I., Wilcox, M. D., Pearson, J. P., & Brownlee, I. A. (2015). The impact of dietary fibres on the physiological processes governing small intestinal digestive processes. Bioactive Carbohydrates and Dietary Fibre, 6, 117–132.

    Article  CAS  Google Scholar 

  • Dhingra, D., Michael, M., Rajput, H., & Patil, R. T. (2012). Dietary fibre in foods: a review. Journal of Food Science and Technology, 49(3), 255–266.

    Article  CAS  Google Scholar 

  • Dello Staffolo, M., Bertola, N., Martino, M., & Bevilacqua, A. (2004). Influence of dietary fibre addition on sensory and rheological properties of yoghurt. International Dairy Journal, 14, 263–268.

    Article  Google Scholar 

  • Dello Staffolo, M., Martino, M., & Bevilacqua, A. (2007). Texture and sensory properties of dairy desserts with dietary fibres of different sources. Acta Alimentaria, 36(3), 371–361.

    Google Scholar 

  • Dello Staffolo, M., Martino, M., Bevilacqua, A., Montero, M., Rodríguez, M. S., & Albertengo, L. (2011). Chitosan interaction with iron from yoghurt using an in vitro digestive model: comparative study with plant dietary fibers. International Journal of Molecular Science, 12, 4647–4660.

    Article  CAS  Google Scholar 

  • Dello Staffolo, M., Bevilacqua, A. E., Rodríguez, M. S., & Albertengo, L. (2012). Dietary fiber and availability of nutrients: a case study on yoghurt as a food model. In D. N. Karunaratn (Ed.), The complex world of polysaccharides (pp. 455–490). Rijeka: Intech.

    Google Scholar 

  • Elleuch, M., Bedigian, D., Roiseux, O., Besbes, S., Blecker, C., & Attia, H. (2011). Dietary fibre and fibre-rich by-products of food processing: characterization, technological functionality and commercial applications: a review. Food Chemistry, 124, 411–421.

    Article  CAS  Google Scholar 

  • Fernández-García, E., & McGregor, J. U. (1997). Fortification of sweetened plain yogurt with insoluble dietary fiber. Zeitschrift fuer Lebensmittel—Untersuchung und—Forschung A, 204, 433–437.

    Article  Google Scholar 

  • Ferrero, C. (1992). Effect of freezing and storage on the deterioration of gelatinized starch suspensions. PhD thesis. La Plata: SEDICI, Universidad Nacional de La Plata, Argentina.

  • Fleury, N., & Lahaye, M. (1991). Chemical and physico-chemical characterisation of fibres from Lamiaria digitata (Kombu Breton): a physiological approach. Journal of the Science of Food and Agriculture, 55, 389–400.

    Article  CAS  Google Scholar 

  • Franck, A. (2002). Technological functionality of inulin and oligofructose. British Journal of Nutrition, 87(Suppl. 2), S287–S291.

    Article  CAS  Google Scholar 

  • Friedman, M. A. (1998). Food additives permitted for direct addition to food for human consumption; Sucralose Federal Register: 21 CFR Part 172, Docket No. 87F-0086, April 3.

  • Gelroth, J., & Ranhotra, G. R. (2001). Food uses of fiber. In S. S. Cho & M. L. Dreher (Eds.), Handbook of dietary fiber. New York: Marcel Dekker.

    Google Scholar 

  • Guillon, F., Champ, M., Thibault, J.-F., & Saulnier, L. (2011). Dietary fibre functional products. In M. Saarela (Ed.), Functional foods: concept to product (pp. 582–622). Cambridge: Woodhead Publishing Ltd..

    Chapter  Google Scholar 

  • Gunasekaran, S., & Ak, M. M. (2003). Cheese texture in cheese rheology and texture. Boca Raton: CRC Press.

    Google Scholar 

  • Iop, S. C. F., Silva, R. S. F., & Beleia, A. P. (1999). Formulation and evaluation of dry dessert mix containing sweetener combinations using mixture response methodology. Food Chemistry, 66, 167–171.

    Article  CAS  Google Scholar 

  • ISO 13320:2009(E). International standard. Particle size analysis—laser diffraction methods. Geneva: ISO Organization.

  • Kilcast, D., & Clegg, S. (2002). Sensory perception of creaminess and its relationship with food structure. Food Quality and Preference, 13, 609–623.

    Article  Google Scholar 

  • Krzeminski, A., Prell, K. A., Busch-Stockfisch, M., Weiss, J., & Hinrichs, J. (2014). Whey protein-pectin complexes as new texturising elements in fat-reduced yoghurt systems. International Dairy Journal, 36, 118–127.

    Article  CAS  Google Scholar 

  • Macagnan, F. T., da Silva, L. P., & Hecktheuer, L. H. (2016). Dietary fiber: the scientific search for an ideal definition and methodology of analysis, and its physiological importance as a carrier of bioactive compounds. Food Research International, In Press, Accepted Manuscript. doi:10.1016/j.foodres.2016.04.032.

    Google Scholar 

  • Mackie, A., Bajka, B., & Rigby, N. (2015). Roles for dietary fibre in the upper GI tract: the importance of viscosity. Food Research International: In Press, Corrected Proof http://dx.doi.org/10.1016/j.foodres.2015.11.011.

    Google Scholar 

  • Menezes, E. W. d., Grande, F., Bistriche Giuntini, E., do Vale Cardoso Lopes, T., Tanasov Dan, M. C., Bernardino Ramos do Prado, S., et al. (2016). Impact of dietary fiber energy on the calculation of food total energy value in the Brazilian Food Composition Database. Food Chemistry, 193, 128–133.

    Article  CAS  Google Scholar 

  • Meyer, D., Bayarri, S., Tárrega, A., & Costell, E. (2011). Inulin as texture modifier in dairy products. Food Hydrocolloids, 25, 1881–1890.

    Article  CAS  Google Scholar 

  • Mudgil, D., & Barak, B. (2013). Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: a review. International Journal of Biological Macromolecules, 6, 1–6.

    Article  Google Scholar 

  • Peleg, M. (1984). A note on the various strain measures at large compressive deformations. Journal of Texture Studies, 15(4), 317–326.

    Article  Google Scholar 

  • Pinheiro, M. V. S., Oliveira, M. N., Penna, A. L. B., & Tamine, A. Y. (2005). The effect of different sweeteners in low-calorie yogurts—a review. International Journal of Dairy Technology, 58(4), 193–199.

    Article  CAS  Google Scholar 

  • Protimiza Experimental Design. Statistical software released on 2014 by Rodrigues, M.I. & Costa, P. (http://experimental-design.protimiza.com.br/).

  • Quirós-Sauceda, A. E., Palafox-Carlos, H., Sáyago-Ayerdi, S. G., Ayala-Zavala, J. F., Bello-Perez, L. A., Álvarez-Parrilla, E., et al. (2014). Dietary fiber and phenolic compounds as functional ingredients: interaction and possible effect after ingestion. Food & Function, 5(6), 1063–1072.

    Article  Google Scholar 

  • Raghavendra, S. N., Ramachandra Swamy, S. R., Rastogi, N. K., Raghavarao, K. S. M. S., Kumar, S., & Tharanathan, R. N. (2006). Grinding characteristics and hydration properties of coconut residue: a source of dietary fiber. Journal of Food Engineering, 72, 281–286.

    Article  Google Scholar 

  • Redgwell, R. J., & Fischer, M. (2005). Dietary fiber as a versatile food component: an industrial perspective. Molecular Nutrition & Food Research, 49(6), 521–535.

    Article  Google Scholar 

  • Ribeiro, K. O., Rodrigues, M. I., Sabadini, E., & Cunha, R. L. (2004). Mechanical properties of acid sodium caseinate-k-carrageenan gels: effect of co-solute addition. Food Hydrocolloids, 18, 71–79.

    Article  CAS  Google Scholar 

  • Ruiter, A., & Voragen, A. G. J. (2007). Main food additives. In Z. E. Sikorski (Ed.), Chemical and functional properties of food components (pp. 357–373). Boca Raton: CRC Press.

    Google Scholar 

  • Salmen, L. (1982). Temperature and water induced softening behaviour of wood fiber based materials. PhD thesis (150 pp.). Stockholm: Kungl. Tekniska Hogskolan, Sweden.

  • Sendra, E., Kuri, V., Fernández-López, J., Sayas-Barberá, E., Navarro, C., & Pérez-Alvarez, J. A. (2010). Viscoelastic properties of orange fiber enriched yogurt as a function of fiber dose, size and thermal treatment. LWT, Food Science and Technology, 43, 708–714.

    Article  CAS  Google Scholar 

  • Theuwissen, E., & Mensink, R. P. (2008). Water-soluble dietary fibers and cardiovascular disease. Physiology & Behavior, 94, 285–292.

    Article  CAS  Google Scholar 

  • Thybo, A. K., Nielsen, M., & Martens, M. (2000). Influence of uniaxial compression rate on rheological parameters and sensory texture prediction of cooked potatoes. Journal of Textures Studies, 31, 25–40.

    Article  Google Scholar 

  • Tungland, B., & Meyer, D. (2002). Nondigestible oligo- and polysaccharides (dietary fiber): their physiology and role in human health and food. Comprehensive Reviews in Food Science Safety, 3, 73–91.

    Google Scholar 

  • Verbeken, D., Thas, O., & Dewettinck, K. (2004). Textural properties of gelled dairy desserts containing κ-carrageenan and starch. Food Hydrocolloids, 18, 817–823.

    Article  CAS  Google Scholar 

  • Wu, Y., Qian, Y., Pan, Y., Li, P., Yang, J., Ye, X., et al. (2015). Association between dietary fiber intake and risk of coronary heart disease: a meta-analysis. Clinical Nutrition, 34, 603–611.

    Article  Google Scholar 

  • Yu, L., Lutterodt, H., & Cheng, Z. (2008). Chapter 4: beneficial health properties of Psyllium and approaches to improve its functionalities. In F. Toldrá (Ed.), Series: advances in food and nutrition research, 55 (pp. 193–220). London: Elsevier.

    Google Scholar 

Download references

Acknowledgements

This work was supported by CAPES/CAPG-BA Program (no. 09/02) and CONICET (PIP 5395). M. Dello Staffolo gratefully acknowledges the following fiber suppliers: Saporiti, Imperial Sensus, CFF, Procter & Gamble, and JRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Dello Staffolo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dello Staffolo, M., Sato, A.C.K. & Cunha, R.L. Utilization of Plant Dietary Fibers to Reinforce Low-Calorie Dairy Dessert Structure. Food Bioprocess Technol 10, 914–925 (2017). https://doi.org/10.1007/s11947-017-1872-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-017-1872-9

Keywords

Navigation