Skip to main content
Log in

Convection Effects During Bulk Transparent Alloy Solidification in DECLIC-DSI and Phase-Field Simulations in Diffusive Conditions

  • Published:
JOM Aims and scope Submit manuscript

Abstract

To study the dynamical formation and evolution of cellular and dendritic arrays under diffusive growth conditions, three-dimensional (3D) directional solidification experiments were conducted in microgravity on a model transparent alloy onboard the International Space Station using the Directional Solidification Insert in the DEvice for the study of Critical LIquids and Crystallization. Selected experiments were repeated on Earth under gravity-driven fluid flow to evidence convection effects. Both radial and axial macrosegregation resulting from convection are observed in ground experiments, and primary spacings measured on Earth and microgravity experiments are noticeably different. The microgravity experiments provide unique benchmark data for numerical simulations of spatially extended pattern formation under diffusive growth conditions. The results of 3D phase-field simulations highlight the importance of accurately modeling thermal conditions that strongly influence the front recoil of the interface and the selection of the primary spacing. The modeling predictions are in good quantitative agreements with the microgravity experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. Billia and R. Trivedi, Handbook of Crystal Growth, vol. 1 (Bristol: Elsevier, 1993), pp. 899–1074.

    Google Scholar 

  2. R. Trivedi, Y. Shen, and S. Liu, Advances in Materials and Materials Processing (New Delhi: Tata McGraw-Hill Publ. Ltd., 2001), pp. 42–49.

    Google Scholar 

  3. M.E. Glicksman, S.R. Coriell, and G.B. Mcfadden, Annu. Rev. Fluid Mech. 18, 307 (1986).

    Article  Google Scholar 

  4. S.H. Davis, J. Fluid Mech. 212, 241 (1990).

    Article  MathSciNet  Google Scholar 

  5. G. Muller and A. Ostrogorsky, Handbook of Crystal Growth, vol. 2B (Amsterdam: Elsevier, 1994), p. 709.

    Google Scholar 

  6. M.D. Dupouy, D. Camel, and J.J. Favier, Acta Metall. 37, 1143 (1989).

    Article  Google Scholar 

  7. H. Nguyen-Thi, G. Reinhart, and B. Billia, C. R. Mec. 345, 66 (2017).

    Article  Google Scholar 

  8. N. Bergeon, D. Tourret, L. Chen, J.M. Debierre, R. Guerin, A. Ramirez, B. Billia, A. Karma, and R. Trivedi, Phys. Rev. Lett. 110, 6102 (2013).

    Article  Google Scholar 

  9. J. Pereda, F.L. Mota, L. Chen, B. Billia, D. Tourret, Y. Song, J.M. Debierre, R. Guérin, A. Karma, R. Trivedi, and N. Bergeon, Phys. Rev. E 95, 2803 (2017).

    Article  Google Scholar 

  10. D. Tourret, J.-M. Debierre, Y. Song, F.L. Mota, N. Bergeon, R. Guérin, R. Trivedi, B. Billia, and A. Karma, Phys. Rev. E 92, 2401 (2015).

    Article  Google Scholar 

  11. M. Georgelin and A. Pocheau, Phys. Rev. Lett. 79, 2698 (1997).

    Article  Google Scholar 

  12. A.J. Clarke, D. Tourret, Y. Song, S.D. Imhoff, P.J. Gibbs, J.W. Gibbs, K. Fezzaa, and A. Karma, Acta Mater. 129, 203 (2017).

    Article  Google Scholar 

  13. G. Grange, J. Gastaldi, C. Jourdan, and B. Billia, J. Cryst. Growth 151, 192 (1995).

    Article  Google Scholar 

  14. R. Trivedi, S. Liu, P. Mazumder, and E. Simsek, Sci. Technol. Adv. Mater. 2, 309 (2001).

    Article  Google Scholar 

  15. B. Drevet, H. Nguyen-Thi, D. Camel, B. Billia, and M.D. Dupouy, J. Cryst. Growth 218, 419 (2000).

    Article  Google Scholar 

  16. H. Nguyen-Thi, Y. Dabo, B. Drevet, M.D. Dupouy, D. Camel, B. Billia, J.D. Hunt, and A. Chilton, J. Cryst. Growth 281, 654 (2005).

    Article  Google Scholar 

  17. G. Pont, S. Barde, B. Zappoli, F. Duclos, Y. Garrabos, C. Lecoutre, D. Beysens, B. Billia, N. Bergeon, N. Mangelinck, R. Marcout, and D. Blonde, 60th International Astronautical Congress (Daejeon: IAC, 2009).

    Google Scholar 

  18. N. Bergeon, C. Weiss, N. Mangelinck-Noel, and B. Billia, Trans. Ind. Inst. Met. 62, 455 (2009).

    Article  Google Scholar 

  19. N. Bergeon, A. Ramirez, L. Chen, B. Billia, J.H. Gu, and R. Trivedi, J. Mater. Sci. 46, 6191 (2011).

    Article  Google Scholar 

  20. F.L. Mota, N. Bergeon, D. Tourret, A. Karma, R. Trivedi, and B. Billia, Acta Mater. 85, 362 (2015).

    Article  Google Scholar 

  21. L.Q. Chen, Annu. Rev. Mater. Res. 32, 113 (2002).

    Article  Google Scholar 

  22. W.J. Boettinger, J.A. Warren, C. Beckermann, and A. Karma, Annu. Rev. Mater. Res. 32, 163 (2002).

    Article  Google Scholar 

  23. J.J. Hoyt, M. Asta, and A. Karma, Mater. Sci. Eng. R 41, 121 (2003).

    Article  Google Scholar 

  24. I. Steinbach, JOM 65, 1096 (2013).

    Article  Google Scholar 

  25. A. Karma and W.J. Rappel, Phys. Rev. E 53, 3017 (1996).

    Article  Google Scholar 

  26. A. Karma and W.J. Rappel, Phys. Rev. E 57, 4323 (1998).

    Article  Google Scholar 

  27. A. Karma, Phys. Rev. Lett. 87, 5701 (2001).

    Google Scholar 

  28. B. Echebarria, R. Folch, A. Karma, and M. Plapp, Phys. Rev. E 70, 1604 (2004).

    Article  Google Scholar 

  29. N. Bergeon, F.L. Mota, L. Chen, D. Tourret, J.M. Debierre, R. Guerin, A. Karma, B. Billia, and R. Trivedi, IOP Conf. Ser. Mater. Sci. Eng. 84, 012077 (2015).

    Article  Google Scholar 

  30. C. Weiss, N. Bergeon, N. Mangelinck-Noel, and B. Billia, Mater. Sci. Eng. A 413, 296 (2005).

    Article  Google Scholar 

  31. W.A. Tiller, K.A. Jackson, J.W. Rutter, and B. Chalmers, Acta Metall. 1, 428 (1953).

    Article  Google Scholar 

  32. W. Mullins and R. Sekerka, J. Appl. Phys. 35, 444 (1964).

    Article  Google Scholar 

  33. J.A. Warren and J.S. Langer, Phys. Rev. E 47, 2702 (1993).

    Article  Google Scholar 

  34. J.J. Favier, Acta Metall. 29, 205 (1981).

    Article  Google Scholar 

  35. D. Camel and J.J. Favier, J. Cryst. Growth 67, 42 (1984).

    Article  Google Scholar 

  36. D. Camel and J.J. Favier, J. Cryst. Growth 67, 57 (1984).

    Article  Google Scholar 

  37. S.R. Coriell, D.T.J. Hurle, and R.F. Sekerka, J. Cryst. Growth 32, 1 (1976).

    Article  Google Scholar 

  38. J.A. Burton, R.C. Prim, and W.P. Slichter, J. Chem. Phys. 21, 1987 (1953).

    Article  Google Scholar 

  39. H. Jamgotchian, N. Bergeon, D. Benielli, P. Voge, B. Billia, and R. Guerin, Phys. Rev. Lett. 87, 6105 (2001).

    Article  Google Scholar 

  40. J.P. Garandet, J.J. Favier, and D. Camel, Handbook of Crystal Growth, vol. 2 (Bristol: Elsevier, 1994), pp. 659–707.

    Google Scholar 

  41. P. Lehmann, R. Moreau, D. Camel, and R. Bolcato, J. Cryst. Growth 183, 690 (1998).

    Article  Google Scholar 

  42. S. Kaddeche, J.P. Garandet, C. Barat, H. BenHadid, and D. Henry, J. Cryst. Growth 158, 144 (1996).

    Article  Google Scholar 

  43. F.L. Mota, L.M. Fabietti, N. Bergeon, L.L. Strutzenberg, A. Karma, B. Billia, and R. Trivedi, J. Cryst. Growth 447, 31 (2016).

    Article  Google Scholar 

  44. R.N. Grugel and Y. Zhou, Metall. Trans. A 20, 969 (1989).

    Article  Google Scholar 

  45. K. Somboonsuk, J.T. Mason, and R. Trivedi, Metall. Trans. A 15, 967 (1984).

    Article  Google Scholar 

  46. R. Trivedi and K. Somboonsuk, Mater. Sci. Eng. 65, 65 (1984).

    Article  Google Scholar 

  47. K. Somboonsuk and R. Trivedi, Acta Metall. 33, 1051 (1985).

    Article  Google Scholar 

  48. R. Trivedi and K. Somboonsuk, Acta Metall. 33, 1061 (1985).

    Article  Google Scholar 

  49. B. Echebarria, A. Karma, and S. Gurevich, Phys. Rev. E 81, 1608 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to CNES (Centre National d’Etudes Spatiales) and NASA (National Aeronautics and Space Administration) for the support received in the scientific projects MISOL3D (MIcrostructures de SOLidification 3D) and DSIP (Dynamical Selection of Interface Patterns). A.K. and R.T. were supported by NASA Grants NNX12AK54G and NNX16AB54G. D.T. gratefully acknowledges support of the U.S. Department of Energy through a Director’s Postdoctoral Fellowship from the LANL/LDRD Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. L. Mota.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mota, F.L., Song, Y., Pereda, J. et al. Convection Effects During Bulk Transparent Alloy Solidification in DECLIC-DSI and Phase-Field Simulations in Diffusive Conditions. JOM 69, 1280–1288 (2017). https://doi.org/10.1007/s11837-017-2395-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2395-6

Navigation