Skip to main content

Advertisement

Log in

Hydrothermally synthesized highly dispersed Na2Ti3O7 nanotubes and their photocatalytic degradation and H2 evolution activity under UV and simulated solar light irradiation

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Photocatalytic water splitting technologies are currently being considered for alternative energy sources. However, the strong demand for a high H2 production rate will present conflicting requirements of excellent photoactivity and low-cost photocatalysts. The first alternative may be abundant nanostructured titanate-related materials as a photocatalyst. Here, we report highly dispersed Na2Ti3O7 nanotubes synthesized via a facile hydrothermal route for photocatalytic degradation of Rhodamine B (RhB) and the water splitting under UV-visible light irradiation. Compared with commercial TiO2, the nanostructured Na2Ti3O7 demonstrated excellent photodegradation and water splitting performance, thus addressing the need for low-cost photocatalysts. The as-synthesized Na2Ti3O7 nanotubes exhibited desirable photodegradation, and rate of H2 production was 1,755 μmol·g−1·h−1 and 1,130 μmol·g−1·h−1 under UV and simulated solar light irradiation, respectively; the resulting as-synthesized Na2Ti3O7 nanotubes are active in UV light than that of visible light response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Hayashi, T. Nakamura and T. Ebina, J. Ceram. Soc. Jpn., 124(1), 74 (2016).

    Article  CAS  Google Scholar 

  2. A.-L. Sauvet, S. Baliteau, C. Lopez and P. Fabry, J. Solid State Chem., 177, 4508 (2004).

    Article  CAS  Google Scholar 

  3. P. Umek, R. C. Korosec, B. Jancar, R. Dominko and D. Arcon, J. Nanosci. Nanotechno., 7, 3502 (2007).

    Article  CAS  Google Scholar 

  4. S. Preda, M. Rutar, P. Umek and M. Zaharescu, Mater. Res. Bull., 71, 98 (2015).

    Article  CAS  Google Scholar 

  5. A. Rudola, N. Sharma and P. Balaya, Electrochem. Commun., 61, 10 (2015).

    Article  CAS  Google Scholar 

  6. S. Anwer, Y. Huang, J. liu, J. Liu, M. Xu, Z. Wang, R. Chen, J. Zhang and F. Wu, ACS Appl. Mater. Interfaces, 9(13), 11669 (2017).

    Article  CAS  Google Scholar 

  7. Y.-T. Yu, Korean J. Chem. Eng., 20(5), 850 (2003).

    Article  CAS  Google Scholar 

  8. D. J.D. Corcoran, D. P. Tunstall and J. T. S. Irvine, Solid State Ionics, 136-137, 297 (2000).

    Article  CAS  Google Scholar 

  9. S. Ogura, M. Kohno, K. Sato and Y. Inoue, J. Mater. Chem., 8, 2335 (1998).

    Article  CAS  Google Scholar 

  10. Y. Wei, L. Shen, Z. Wang, W.-D. Yang and H. Liu, Int. J. Hydrogen Energy, 36(8), 5088 (2011).

    Article  CAS  Google Scholar 

  11. C.-Y. Xu, J. Wu, P. Zhang, S. P. Hu, J.-X. Cui, Z.-Q. Wang, Y.-D. Huang and L. Zhen, Cryst. Eng. Commun., 15, 3448 (2013).

    Article  CAS  Google Scholar 

  12. H. Izawa, S. Kikkawa and M. Koizumi, J. Phys. Chem., 86, 5023 (1982).

    Article  CAS  Google Scholar 

  13. Y. P. Zhang, L. Guo and S. H. Yang, Chem. Commun., 50, 14029 (2014).

    Article  CAS  Google Scholar 

  14. T. Kasuga, M. Hiramatsu, A. Hosono, T. Sekino and K. Niihara, Langmuir, 14, 3160 (1998).

    Article  CAS  Google Scholar 

  15. Z. Zhang, J. B. M. Goodall, S. Brown, L. Karlsson, R. J. H. Clark, J. L. Hutchison, I. U. Rehman and J. A. Darr, Dalton Trans., 39, 711 (2010).

    Article  CAS  Google Scholar 

  16. W. Wang, C. Yu, Z. Lin, J. Hou, H. Zhu and S. Jiao, Nanoscale, 5, 594 (2013).

    Article  CAS  Google Scholar 

  17. T. G. Deepak, D. Subash, G. S. Anjusree, K.R. Narendra Pai, S. V. Nair and A. Sreekumaran Nair, ACS Sustainable Chem. Eng., 2(12), 2772 (2014).

    Article  CAS  Google Scholar 

  18. P. Sujaridworakun, S. Larpkiattaworn, S. Saleepalin and T. Wasanapiarnpong, Adv. Powder Technol., 23(6), 752 (2012).

    Article  CAS  Google Scholar 

  19. V. Etacheri, C. D. Valentin, J. Schneider, D. Bahnemann and S.C. Pillai, J. Photochem. Photobiol. C: Photochem. Rev., 25, 1 (2015).

    Article  CAS  Google Scholar 

  20. S. V. P. Vattikuti, C. Byon, Ch.V. Reddy and R. V. S. S. N. Ravikumar, RSC Adv., 5, 86675 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. V. Prabhakar Vattikuti or Jaesool Shim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vattikuti, S.V.P., Reddy, P.A.K., Bandaru, N. et al. Hydrothermally synthesized highly dispersed Na2Ti3O7 nanotubes and their photocatalytic degradation and H2 evolution activity under UV and simulated solar light irradiation. Korean J. Chem. Eng. 35, 1019–1025 (2018). https://doi.org/10.1007/s11814-017-0355-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0355-z

Keywords

Navigation