Skip to main content
Log in

Space view of the decadal variation for typical air pollutants in the Pearl River Delta (PRD) region in China

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

The Pearl River Delta (PRD) is one of the most industrialized, urbanized and populated regions in China, and thus has been long suffering from severe air pollutions. Space data provide a unique perspective for investigating the atmospheric environment at a regional scale. By utilizing multiple satellite retrievals from 2005 to 2013, this study presented, for the first time, the spatial patterns and temporal trends of typical air pollutants over PRD and its vicinity. As viewed from space, aerosol optical depth (AOD), NO2 and SO2 all had their higher values at the central part of PRD, and showed clear descending gradients as moving to the outskirt of this region. As to the inter-annual variation, all these pollutants had decreasing trends in PRD during the study period, which generally agreed with the relevant in situ measurements. However, the satellite retrievals differed from ground measurements when addressing NO2 and SO2 in the vicinity of PRD. This work also provides the inter-comparison among PRD and three other metropolitan clusters in China: PRD had relatively high AOD, moderate NO2 and low SO2 levels, and it was the only region achieving the effective reduction of NO2 and SO2 during last decade. Unlike the previous three pollutants, HCHO observed by satellite showed very special patterns: it had a relatively homogeneous spatial distribution over both of PRD and its vicinity, and presented an opposite increasing trend from 2005 to 2010. Moreover, PRD had the highest HCHO level among all the metropolitan clusters, hinting a considerable contribution of biogenic origins of HCHO in PRD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhong L, Louie P K, Zheng Z, Yuan Z, Yue D, Ho J W K, Lau A K H. Science-policy interplay: air quality management in the Pearl River Delta Region and Hong Kong. Atmospheric Environment, 2013, 76: 3–10

    Article  CAS  Google Scholar 

  2. Nie W, Wang T, Wang W X, Wei X L, Liu Q. Atmospheric concentrations of particulate sulfate and nitrate in Hong Kong during 1995–2008: impact of local emission and super-regional transport. Atmospheric Environment, 2013, 76: 43–51

    Article  CAS  Google Scholar 

  3. Yuan Z B, Yadav V, Turner J R, Louie P K K, Lau A K H. Longterm trends of ambient particulate matter emission source contributions and the accountability of control strategies in Hong Kong over 1998–2008. Atmospheric Environment, 2013, 76: 21–31

    Article  CAS  Google Scholar 

  4. Lu Q, Zheng J Y, Ye S Q, Shen X L, Yuan Z B, Yin S S. Emission trends and source characteristics of SO2, NOx, PM10 and VOCs in the Pearl River Delta region from 2000 to 2009. Atmospheric Environment, 2013, 76: 11–20

    Article  CAS  Google Scholar 

  5. Wang X, Chen W, Chen D, Wu Z, Fan Q. Long-term trends of fine particulate matter and chemical composition in the Pearl River Delta Economic Zone (PRDEZ), China. Frontiers of Environmental Science and Engineering, 2016, 10(1): 53–62

    Article  CAS  Google Scholar 

  6. Martin R V. Satellite remote sensing of surface air quality. Atmospheric Environment, 2008, 42(34): 7823–7843

    Article  CAS  Google Scholar 

  7. Hoff R M, Christopher S A. Remote sensing of particulate pollution from space: have we reached the Promised Land. Journal of the Air & Waste Management Association, 2009, 59(6): 645–675

    Article  CAS  Google Scholar 

  8. Zhang L. Intercontinental transport of air pollution. Frontiers of Environmental Science and Engineering, 2010, 4(1): 20–29

    Article  CAS  Google Scholar 

  9. Streets D G, Canty T, Carmichael G R, de Foy B, Dickerson R R, Duncan B N, Edwards D P, Haynes J A, Henze D K, HouyouxMR, Jacob D J, Krotkov N A, Lamsal L N, Liu Y, Lu Z, Martin R V, Pfister G G, Pinder R W, Salawitch R J, Wecht K J. Emissions estimation from satellite retrievals: a review of current capability. Atmospheric Environment, 2013, 77: 1011–1042

    Article  CAS  Google Scholar 

  10. Massie S T, Torres O, Smith S J. Total ozone mapping spectrometer (TOMS) observations of increases of Asian aerosol in winter from 1979 to 2000. Journal of Geophysical Research, 2004, 109(D18): D18211

    Article  Google Scholar 

  11. Yoon J, Burrows J P, Vountas M, von Hoyningen-Hueue W. Changes in atmospheric aerosol loadings retrieved from space-based measurements during the past decade. Atmospheric Chemistry and Physics, 2014, 14(13): 6881–6902

    Article  CAS  Google Scholar 

  12. Wang Y, Zhang Y, Hao J. Review on the applications of tropospheric emissions spectrometer to air-quality research: perspectives for China. Frontiers of Environmental Science and Engineering, 2010, 4(1): 12–19

    Article  CAS  Google Scholar 

  13. Zhang Q, Streets D G, He K, Wang Y, Richter A, Burrows J P, Uno I, Jang C J, Chen D, Yao Z, Lei Y. NOx emissions trends for China, 1995–2004: the view from the ground and the view from space. Journal of Geophysical Research, 2007, 112(D22): D22306

    Article  Google Scholar 

  14. Itahashi S, Uno I, Yumimono K, Irie H, Osada K, Ogata K, Fukushima H, Wang Z, Ohara T. Interannual variation in the finemode MODIS aerosol optical depth and its relationship to the changes in sulfur dioxide emissions in China between 2000 and 2010. Atmospheric Chemistry and Physics, 2012, 12(5): 2631–2640

    Article  CAS  Google Scholar 

  15. Wang S, Xing J, Chatani S, Hao J, Klimont Z, Cofala J, Amann M. Verification of anthropogenic emissions of China by satellite and ground observations. Atmospheric Environment, 2011, 45(35): 6347–6358

    Article  CAS  Google Scholar 

  16. Lu Z, Zhang Q, Streets D G. Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996–2010. Atmospheric Chemistry and Physics, 2011, 11(18): 9839–9864

    Article  CAS  Google Scholar 

  17. De Smedt I, Stavrakou T, Müller J F, van der A R J, Van Roozendael M. van der A and Van Roozendael. Trend detection in satellite observations for formaldehyde tropospheric columns. Geophysical Research Letters, 2010, 37(18): L18808

    Google Scholar 

  18. Zhang Y, Su H, Zhong L J, Cheng Y F, Zeng LM,Wang X S, Xiang Y R,Wang J L, Gao D F, Shao M, Fan S J, Liu S C. Regional ozone pollution and observation-based approach for analyzing ozoneprecursor relationship during the PRIDE-PRD 2004 campaign. Atmospheric Environment, 2008, 42(25): 6203–6218

    Article  CAS  Google Scholar 

  19. Lo J C F, Lau A K H, Fung J C H, Chen F. Investigation of enhanced cross-city transport and trapping of air pollutants by coastal and urban land-sea breeze circulations. Journal of Geophysical Research, 2006, 111: D14104

  20. Wu D, Tie X X, Li C C, Ying Z M, Lau A K H, Huang J. An extremely low visibility event over the Guangzhou region: a case study. Atmospheric Environment, 2005, 39(35): 6568–6577

    Article  CAS  Google Scholar 

  21. Zheng J Y, Zhang L J, Che W W, Zheng Z Y, Yin S S. A highly resolved temporal and spatial air pollutant emission inventory for the Pearl River Delta region, China and its uncertainty assessment. Atmospheric Environment, 2009, 43(32): 5112–5122

    Article  CAS  Google Scholar 

  22. GDPBS (Guangdong Provincial Bureau of Statistic). 2006–2015. Guangdong Statistical Year books from 2006 to 2015. Available at: http://www.gdstats.gov.cn/tjsj/gdtjnj/ (in Chinese)

  23. Kaufman Y J, Tanré D, Remer L A, Vermote E F, Chu A, Holben B N. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. Journal of Geophysical Research, 1997, 102(D14): 17051–17067

    Google Scholar 

  24. Tanré D, Kaufman Y J, Herman M, Mattoo S. Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances. Journal of Geophysical Research, 1997, 102(D14): 16971–16988

    Article  Google Scholar 

  25. Remer L A, Kaufman Y J, Tanré D, Mattoo S, Chu D A, Martins J V, Li R R, Ichoku C, Levy R C, Kleidman R G, Eck T F, Vermote E, Holben B N. The MODIS aerosol algorithm, products, and validation. Journal of the Atmospheric Sciences, 2005, 62(4): 947–973

    Article  Google Scholar 

  26. Abdou W A, Diner D J, Martonchik J V, Bruegge C J, Kahn R A, Gaitley B J, Crean K A, Remer L A, Holben B. Comparison of coincident multiangle imaging spectroradiometer and moderate resolution imaging spectroradiometer aerosol optical depths over land and ocean scenes containing aerosol robotic network sites. Journal of Geophysical Research, 2005, 110(D10): D10S07

    Article  Google Scholar 

  27. Levelt P F, van den Oord G H J, Dobber M R, Malkki A, Visser H, de Vries J, Stammes P, Lundell J O, Saari H. The ozone monitoring instrument. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(5): 1093–1101

    Article  Google Scholar 

  28. Boersma K F, Eskes H J, Veefkind J P, Brinksma E J. van der A R J, Sneep M, van den Oord G H J,, Levelt P F, Stammes P, Gleason J F, Bucsela E J. Near-real time retrieval of tropospheric NO2 from OMI. Atmospheric Chemistry and Physics, 2007, 6(6): 2013–2128

    Google Scholar 

  29. Boersma K F, Eskes H J, Brinksma E J. Error analysis for tropospheric NO2 retrieval from space. Journal of Geophysical Research, 2004, 109(D4): D04311

    Article  Google Scholar 

  30. Chance K, Palmer P I, Spurr R J D, Martin R V, Kurosu T P, Jacob D J. Satellite observations of formaldehyde over North America from GOME. Geophysical Research Letters, 2000, 27(21): 3461–3464

    Article  CAS  Google Scholar 

  31. Krotkov N A, Carn S A, Krueger A J, Bhartia P K, Kai Yang. Band residual difference algorithm for retrieval of SO2 from the Aura Ozone Monitoring Instrument (OMI). IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(5): 1259–1266

    Article  Google Scholar 

  32. Krotkov N A, McClure B, Dickerson R R, Carn S A, Li C, Bhartia P K, Yang K, Krueger A J, Li Z, Levelt P F, Chen H, Wang P, Lu D. Validation of SO2 retrievals from the ozone monitoring instrument over NE China. Journal of Geophysical Research, 2008, 113(D16): D16S40

    Article  Google Scholar 

  33. De Smedt I, Muller J F, Stavrakou T, van der A R, Eskes H, Van Roozendael M. Twelve years of global observations of formaldehyde in the troposphere using GOME and SCIAMACHY sensors. Atmospheric Chemistry and Physics, 2008, 8(16): 4947–4963

    Article  CAS  Google Scholar 

  34. Abad G GLiu X, Chance K, Wang H, Kurosu T P, Suleiman R. Updated smithsonian astrophysical observatory ozone monitoring instrument (SAO OMI) formaldehyde retrieval. Atmospheric Measurement Techniques, 2014, 8(1): 19–32

    Article  Google Scholar 

  35. GDEPA (Guangdong Environmental Protection Agency). 2005–2014. Environment Statistical Bulletin of Guangdong (2005 to 2014). Available at: http://www.gdep.gov.cn/zlkz/(in Chinese)

  36. Rutkowska A. Properties of the Cox–Stuart test for trend in application to hydrological series: the simulation study. Communications in Statistics–Simulation and Computation, 2015, 44(3): 565–579

    Article  Google Scholar 

  37. Kanakidou M, Seinfeld J H, Pandis S N, Barnes I, Dentener F J, Facchini M C, Van Dingenen R, Ervens B, Nenes A, Nielsen C J, Swietlicki E, Putaud J P, Balkanski Y, Fuzzi S, Horth J, Moortgat G K,Winterhalter R, Myhre C E L, Tsigaridis K, Vignati E, Stephanou E G, Wilson J. Organic aerosol and global climate modelling: a review. Atmospheric Chemistry and Physics, 2005, 5(4): 1053–1123

    Article  CAS  Google Scholar 

  38. Parrish D D, Ryerson T B, Mellqvist J, Johansson J, Fried A, Richter D, Walega J G, Washenfelder R A, de Gouw J A, Peischl J, Aikin K C, McKeen S A, Frost G J, Fehsenfeld F C, Herndon S C. Primary and secondary sources of formaldehyde in urban atmospheres: Houston Texas region. Atmospheric Chemistry and Physics, 2012, 12(7): 3273–3288

    Article  CAS  Google Scholar 

  39. Qu W J, Arimoto R, Zhang Y X, Zhao C H, Wang Y Q, Sheng L F, Fu G. Spatial distribution and interannual variation of surace PM10 concentrations over eighty-six Chinese cities. Atmospheric Chemistry and Physics, 2010, 10(12): 5641–5662

    Article  CAS  Google Scholar 

  40. Barnaba F, Putaud J P, Gruening C, dell’Acqua A, Dos Santos S. Annual cycle in collocated in situ, total-column, and height-resolved aerosol observations in the Po Valley (Italy): implications for ground-level particulate matter mass concentration estimation from remote sensing. Journal of Geophysical Research, 2010, 115(D19): D19209

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Shao or Liangfu Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Shao, M., Chen, L. et al. Space view of the decadal variation for typical air pollutants in the Pearl River Delta (PRD) region in China. Front. Environ. Sci. Eng. 10, 9 (2016). https://doi.org/10.1007/s11783-016-0853-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-016-0853-y

Keywords

Navigation