Skip to main content
Log in

On secondary new particle formation in China

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

An Erratum to this article was published on 23 June 2016

Abstract

Formation of new atmospheric aerosol particles is a global phenomenon that has been observed to take place in even heavily-polluted environments. However, in all environments there appears to be a threshold value of the condensation sink (due to pre-existing aerosol particles) after which the formation rate of 3 nm particles is no longer detected. In China, new particle production has been observed at very high pollution levels (condensation sink about 0.1 s–1) in several megacities, including Beijing, Shanghai and Nanjing as well as in Pearl River Delta (PRD). Here we summarize the recent findings obtained from these studies and discuss the various implications these findings will have on future research and policy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. IPCC. 2013. Climate Change 2013: The Physical Science Basis. Stocker T F, Qin D, Plattner G K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M, eds. Cambridge: Cambridge University Press, United Kingdom and New York, NY, USA, 1535

  2. Hand J L, Malm W C. Review of aerosol mass scattering efficiencies from ground-based measurements since 1990. Journal of Geophysical Research, 2007, 112(D16): D16203

    Article  Google Scholar 

  3. Lelieveld J, Evans J S, Fnais M, Giannadaki D, Pozzer A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature, 2015, 525(7569): 367–371

    Article  CAS  Google Scholar 

  4. Kulmala M, Nieminen T, Nikandrova A, Lehtipalo K, Manninen H E, Kajos M K, Kolari P, Lauri A, Petäjä T, Krejci R, Hansson H C, Swietlicki E, Lindroth A, Christensen T R, Arneth A, Hari P, Bäck J, Vesala T, Kerminen V M. CO2-induced terrestrial climate feedback mechanism: From carbon sink to aerosol source and back. Boreal Environmental Research, 2014, 19(Suppl. B): 122–131

    Google Scholar 

  5. Kulmala M, Kerminen V M. On the formation and growth of atmospheric nanoparticles. Atmospheric Research, 2008, 90(2–4): 132–150

    Article  CAS  Google Scholar 

  6. Kulmala M, Petäjä T, Ehn M, Thornton J, Sipilä M, Worsnop D R, Kerminen V M. Chemistry of atmospheric nucleation: on the recent advances on precursor characterization and atmospheric cluster composition in connection with atmospheric new particle formation. Annual Review of Physical Chemistry, 2014b, 65(1): 21–37

    Article  CAS  Google Scholar 

  7. Zhang R, Khalizov A, Wang L, Hu M, Xu W. Nucleation and growth of nanoparticles in the atmosphere. Chemical Reviews, 2012, 112(3): 1957–2011

    Article  CAS  Google Scholar 

  8. Weber R J, Marti J J, McMurry P H, Eisele F L, Tanner D J, Jefferson A. Measured Atomospheric New Particle Formation Rates: Implications For Nucleation Mechanisms. Chemical Engineering Communications, 1996, 151(1): 53–64

    Article  CAS  Google Scholar 

  9. Kulmala M, Lehtinen K E J, Laaksonen A. Cluster activation theory as an explanation of the linear dependence between formation rate of 3 nm particles and sulphuric acid concentration. Atmospheric Chemistry and Physics, 2006, 6(3): 787–793

    Article  CAS  Google Scholar 

  10. Kulmala M, Toivonen A, Mäkelä J, Laaksonen A. Analysis of the growth of nucleation mode particles observed in Boreal forest. Tellus. Series B, Chemical and Physical Meteorology, 1998, 50(5): 449–462

    Article  Google Scholar 

  11. Vehkamäki H, Riipinen I. Thermodynamics and kinetics of atmospheric aerosol particle formation and growth. Chemical Society Reviews, 2012, 41(15): 5160–5173

    Article  Google Scholar 

  12. Kulmala M, Kerminen V M, Anttila T, Laaksonen A, O’Dowd C D. Organic aerosol formation via sulphate cluster activation. Journal of Geophysical Research, 2004, 109(D4): n/a

    Google Scholar 

  13. Kulmala M, Kontkanen J, Junninen H, Lehtipalo K, Manninen H E, Nieminen T, Petäjä T, Sipilä M, Schobesberger S, Rantala P, Franchin A, Jokinen T, Järvinen E, Äijälä M, Kangasluoma J, Hakala J, Aalto P P, Paasonen P, Mikkilä J, Vanhanen J, Aalto J, Hakola H, Makkonen U, Ruuskanen T, Mauldin R L 3rd, Duplissy J, Vehkamäki H, Bäck J, Kortelainen A, Riipinen I, Kurtén T, Johnston M V, Smith J N, Ehn M, Mentel T F, Lehtinen K E, Laaksonen A, Kerminen V M, Worsnop D R. Direct observations of atmospheric aerosol nucleation. Science, 2013, 339(6122): 943–946

    Article  CAS  Google Scholar 

  14. Kerminen V M, Paramonov M, Anttila T, Riipinen I, Fountoukis C, Korhonen H, Asmi E, Laakso L, Lihavainen H, Swietlicki E, Svenningsson B, Asmi A, Pandis S N, Kulmala M, Petäjä T. Cloud condensation nuclei production associated with atmospheric nucleation: a synthesis based on existing literature and new results. Atmospheric Chemistry and Physics, 2012, 12(24): 12037–12059

    Article  CAS  Google Scholar 

  15. Guo S, Hua M, Zamorab M L, Peng J F, Shang D J, Zheng J, Du Z F, Wu Z J, Shao M, Zeng L M, Molinac M J, Zhang R Y. Elucidating severe urban haze formation in China. Proceedings of the National Academy of Sciences of the United States of America, 2014, 17373–17378

    Google Scholar 

  16. Huang R J, Zhang Y, Bozzetti C, Ho K F, Cao J J, Han Y, Daellenbach K R, Slowik J G, Platt S M, Canonaco F, Zotter P, Wolf R, Pieber S M, Bruns E A, Crippa M, Ciarelli G, Piazzalunga A, Schwikowski M, Abbaszade G, Schnelle-Kreis J, Zimmermann R, An Z, Szidat S, Baltensperger U, El Haddad I, Prévôt A S H. High secondary aerosol contribution to particulate pollution during haze events in China. Nature, 2014, 514(7521): 218–222

    CAS  Google Scholar 

  17. Wu Z J, Hu M, Liu S, Wehner B, Bauer S, Ma ßling A, Wiedensohler A, Petäjä T, Dal Maso M, Kulmala M. New particle formation in Beijing, China: Statistical analysis of a 1-year data set. Journal of Geophysical Research, D, Atmospheres, 2007, 112: D09209

    Google Scholar 

  18. Xiao S, Wang M Y, Yao L, Kulmala M, Zhou B, Yang X, Chen J M, Wang D F, Fu Q Y, Worsnop D R, Wang L. Strong atmospheric new particle formation in winter in urban Shanghai, China. Atmospheric Chemistry and Physics, 2015, 15(4): 1769–1781

    Article  CAS  Google Scholar 

  19. Nie W, Ding A, Wang T, Kerminen V M, George C, Xue L, Wang W, Zhang Q, Petäjä T, Qi X, Gao X, Wang X, Yang X, Fu C, Kulmala M. Polluted dust promotes new particle formation and growth. Scientific Reports, 2014, 4: 6634

    Article  CAS  Google Scholar 

  20. Xie Y, Ding A, Nie W, Mao H, Qi X, Huang X, Xu Z, Kerminen V M, Petäjä T, Chi X, Virkkula A, Boy M, Xue L, Guo J, Sun J, Yang X, Kulmala M, Fu C. Enhanced sulfate formation by nitrogen dioxide: Implications from in situ observations at the SORPES station. Journal of Geophysical Research, D, Atmospheres, 2015, 120(24): 12679–12694

    Article  CAS  Google Scholar 

  21. Kulmala M. Atmospheric chemistry: China’s choking cocktail. Nature, 2015, 526(7574): 497–499

    Article  CAS  Google Scholar 

  22. Fiore A M, Naik V, Spracklen D V, Steiner A, Unger N, Prather M, Bergmann D, Cameron-Smith P J, Cionni I, Collins W J, Dalsøren S, Eyring V, Folberth G A, Ginoux P, Horowitz L W, Josse B, Lamarque J F, MacKenzie I A, Nagashima T, O’Connor F M, Righi M, Rumbold S T, Shindell D T, Skeie R B, Sudo K, Szopa S, Takemura T, Zeng G. Global air quality and climate. Chemical Society Reviews, 2012, 41(19): 6663–6683

    Article  CAS  Google Scholar 

  23. Fuzzi S, Baltensperger U, Carslaw K, Decesari S, Denier van der Gon H, Facchini M C, Fowler D, Koren I, Langford B, Lohmann U, Nemitz E, Pandis S, Riipinen I, Rudich Y, Schaap M, Slowik J G, Spracklen D V, Vignati E, Wild M, Williams M, Gilardoni S. Particulate matter, air quality and climate: lessons learned and future needs. Atmospheric Chemistry and Physics, 2015, 15(14): 8217–8299

    Article  CAS  Google Scholar 

  24. Hari P, Petäjä T, Bäck J, Kerminen V M, Lappalainen H K, Vihma T, Laurila T, Viisanen Y, Vesala T, Kulmala M. Conceptual design of a measurement network of the global change. Atmospheric Chemistry and Physics, 2016, 16(2): 1017–1028

    Article  CAS  Google Scholar 

  25. Lin P, Hu M, Wu Z, Niu Y, Zhu T. Marine aerosol size distributions in the springtime over China adjacent seas. Atmospheric Environment, 2007, 41(32): 6784–6796

    Article  CAS  Google Scholar 

  26. Liu S, Hu M, Wu Z J, Wehner B, Wiedensohler A, Cheng Y F. Aerosol number size distribution and new particle formation at a rural/coastal site in Pearl River Delta (PRD) of China. Atmospheric Environment, 2008, 42(25): 6275–6283

    Article  CAS  Google Scholar 

  27. Gong Y G, Hu M, Cheng Y, Su H, Yue D, Liu F, Wiedensohler A, Wang Z, Kalesse H, Liu S, Wu Z, Xiao K, Mi P, Zhang Y. Competition of coagulation sink and source rate: New particle formation in the Pearl River Delta of China. Atmospheric Environment, 2010, 44(27): 3278–3285

    Article  CAS  Google Scholar 

  28. Yue D L, Hu M, Zhang R Y, Wang Z B, Zheng J, Wu Z J, Wiedensohler A, He L Y, Huang X F, Zhu T. The roles of sulfuric acid in new particle formation and growth in the mega-city of Beijing. Atmospheric Chemistry and Physics, 2010, 10(10): 4953–4960

    Article  CAS  Google Scholar 

  29. Wu Z J, Hu M, Yue D L, Liu S, Wehner B, Wiedensohler A. Evolution of particle number size distribution in an urban atmosphere during episodes of heavy pollution and new particle formation. Science. China Earth Sciences, 2011, 54: 1772–1778

    Article  CAS  Google Scholar 

  30. Yue D L, Hu M, Zhang R Y, Wu Z J, Su H, Wang Z B, Peng J F, He L Y, Huang X F, Gong Y G, Wiedensohler A. Potential contribution of new particle formation to cloud condensation nuclei in Beijing. Atmospheric Environment, 2011, 45(33): 6070–6077

    Article  CAS  Google Scholar 

  31. Wang Z B, Hu M, Mogensen D, Yue D L, Zheng J, Zhang R Y, Liu Y, Yuan B, Li X, Shao M, Zhou L, Wu Z J, Wiedensohler A, Boy M. The simulations of sulfuric acid concentration and new particle formation in an urban atmosphere in China. Atmospheric Chemistry and Physics, 2013a, 13(21): 11157–11167

    Article  CAS  Google Scholar 

  32. Yue D L, Hu M, Wang Z B, Wen M T, Guo S, Zhong L J, Wiedensohler A, Zhang Y H. Comparison of particle number size distributions and new particle formation between the urban and rural sites in the PRD region, China. Atmospheric Environment, 2013, 76: 181–188

    Article  CAS  Google Scholar 

  33. Peng J F, Hu M, Wang Z B, Huang X F, Kumar P, Wu Z J, Guo S, Yue D L, Shang D J, Zheng Z, He L Y. Submicron aerosols at thirteen diversified sites in China: size distribution, new particle formation and corresponding contribution to cloud condensation nuclei production. Atmospheric Chemistry and Physics, 2014, 14(18): 10249–10265

    Article  CAS  Google Scholar 

  34. Qi X, Ding A J, Nie W, Petäjä T, Kerminen V M, Herrmann E, Xie Y N, Zheng L F, Manninen H, Aalto P, Sun J N, Xu Z N, Chi X G, Huang X, Boy M, Virkkula A, Yang X Q, Fu C B, Kulmala M. Aerosol size distribution and new particle formation in western Yangtze River Delta of China: two-year measurement at the SORPES station. Atmospheric Chemistry and Physics Discussion, 2015, 15(8): 12491–12537

    Article  Google Scholar 

  35. Wehner B, Wiedensohler A, Tuch T M, Wu Z J, Hu M, Slanina J, Kiang C S. Variability of the aerosol number size distribution in Beijing, China: New particle formation, dust storms, and high continental background. Geophysical Research Letters, 2004, 31(22): L22108

    Article  Google Scholar 

  36. Wang Z B, Hu M, Wu Z J, Yue D L, He L Y, Huang X F, Liu X G, Wiedensohler A. Long-term measurements of particle number size distributions and the relationships with air mass history and source apportionment in the summer of Beijing. Atmospheric Chemistry and Physics, 2013d, 13(20): 10159–10170

    Article  CAS  Google Scholar 

  37. Wang Z B, Hu M, Wu Z J, Yue D L. Research on the Formation Mechanisms of New Particles in the Atmosphere. Acta Chimica Sinica, 2013c, 71(04): 519–527

    Article  CAS  Google Scholar 

  38. Yue D L, Hu M, Wu Z J, Wang Z B, Guo S, Wehner B, Nowak A, Achtert P, Wiedensohler A, Jung J S, Kim Y J, Liu S C. Characteristics of aerosol size distributions and new particle formation in the summer in Beijing. Journal of Geophysical Research, D, Atmospheres, 2009, 114: D00G12

    Article  Google Scholar 

  39. Wang Z B, Hu M, Yue D L, Zheng J, Zhang R Y, Wiedensohler A, Wu Z J, Nieminen T, Boy M. Evaluation on the role of sulfuric acid in the mechanisms of new particle formation for Beijing case. Atmospheric Chemistry and Physics, 2011, 11(24): 12663–12671

    Article  CAS  Google Scholar 

  40. Wang Z B, Hu M, Pei X Y, Zhang R Y, Paasonen P, Zheng J, Yue D L, Wu Z J, Boy M, Wiedensohler A. Connection of organics to atmospheric new particle formation and growth at an urban site of Beijing. Atmospheric Environment, 2015, 103: 7–17

    Article  Google Scholar 

  41. Kulmala M, Dal Maso M, Mäkelä J M, Pirjola L, Väkevä M, Aalto P, Miikkulainen P, Hämeri K, O'Dowd C D. On the formation, growth and composition of nucleation mode particles. Tellus, 2001, 53B(4): 479–480

    Article  Google Scholar 

  42. Kulmala M, Petäjä T, Mönkkönen P, Koponen I K, Dal Maso M, Aalto P P, Lehtinen K E J, Kerminen V M. On the growth of nucleation mode particles: source rates of condensable vapor in polluted and clean environments. Atmospheric Chemistry and Physics, 2005, 5(2): 409–416

    Article  CAS  Google Scholar 

  43. Wang Z B, Hu M, Sun J Y, Wu Z J, Yue D L, Shen X J, Zhang Y M, Pei X Y, Cheng Y F, Wiedensohler A. Characteristics of regional new particle formation in urban and regional background environments in the North China Plain. Atmospheric Chemistry and Physics, 2013, 13(24): 12495–12506

    Article  CAS  Google Scholar 

  44. Wang Z B, Hu M, Yue D L, He L Y, Huang X F, Yang Q, Zheng J, Zhang R Y, Zhang Y H. New particle formation in the presence of a strong biomass burning episode at a downwind rural site in PRD, China. Tellus. Series B, Chemical and Physical Meteorology, 2013, 65(1): 97–112

    Google Scholar 

  45. Ding A, Fu C, Yang X, Sun J, Zheng L, Xie Y, Herrmann E, Nie W, Petäjä T, Kerminen V M, Kulmala M. Ozone and fine particle in the western Yangtze river delta: an overview of 1 yr data at the SORPES station. Atmospheric Chemistry and Physics, 2013a, 13(11): 5813–5830

    Article  CAS  Google Scholar 

  46. Ding A J, Fu C B, Yang X Q, Sun J N, Petäjä T, Kerminen V M, Wang T, Xie Y N, Herrmann E, Zheng L F, Nie W, Wei L W, Kulmala M. Intense atmospheric pollution modifies weather: a case of mixed biomass burning with fossil fuel combustion pollution in the eastern China. Atmospheric Chemistry and Physics, 2013b, 13(20): 10545–10554

    Article  Google Scholar 

  47. Dupart Y, King S M, Nekat B, Nowak A, Wiedensohler A, Herrmann H, David G, Thomas B, Miffre A, Rairoux P, D’Anna B, George C. Mineral dust photochemistry induces nucleation events in the presence of SO2. Proceedings of the National Academy of Sciences, 2012, 20842–20847

    Google Scholar 

  48. Kerminen V M, Pirjola L, Kulmala M. How significantly does coagulational scavenging limit atmospheric particle production? Journal of Geophysical Research, 2001, 106(D20): 24119–24126

    Article  CAS  Google Scholar 

  49. Lehtinen K E J, Dal Maso M, Kulmala M, Kerminen V M. Estimating nucleation rates from apparent particle formation rates and vice-versa: Revised formulation of the Kerminen-Kulmala equation. Journal of Aerosol Science, 2007, 38(9): 988–994

    Article  CAS  Google Scholar 

  50. Nie W, Ding A J, Xie Y N, Xu Z, Mao H, Kerminen V M, Zheng L F, Qi X M, Huang X, Yang X Q, Sun J N, Herrmann E, Petäjä T, Kulmala M, Fu C B. Influence of biomass burning plumes on HONO chemistry in eastern China. Atmospheric Chemistry and Physics, 2015, 15(3): 1147–1159

    Article  CAS  Google Scholar 

  51. He H, Wang Y, Ma Q, Ma J, Chu B, Ji D, Tang G, Liu C, Zhang H, Hao J. Mineral dust and NOx promote the conversion of SO2 to sulfate in heavy pollution days. Scientific Reports, 2014, 4: 4172

    Google Scholar 

  52. Vanhanen J, Mikkilä J, Lehtipalo K, Sipilä M, Manninen H E, Siivola E, Petäjä T, Kulmala M. Particle size magnifier for nano-CN Detection. Aerosol Science and Technology, 2011, 45(4): 533–542

    Article  CAS  Google Scholar 

  53. Kulmala M, Riipinen I, Sipilä M, Manninen H E, Petäjä T, Junninen H, Maso M D, Mordas G, Mirme A, Vana M, Hirsikko A, Laakso L, Harrison R M, Hanson I, Leung C, Lehtinen K E J, Kerminen V M. Toward direct measurement of atmospheric nucleation. Science, 2007, 318(5847): 89–92

    Article  CAS  Google Scholar 

  54. Tammet H. Symmetric Inclined Grid Mobility Analyzer for the Measurement of Charged Clusters and Fine Nanoparticles in Atmospheric Air. Aerosol Science and Technology, 2011, 45(4): 468–479

    Article  CAS  Google Scholar 

  55. Gagné S, Nieminen T, Kurtén T, Manninen H E, Petäjä T, Laakso L, Kerminen V M, Boy M, Kulmala M. Factors influencing the contribution of ion-induced nucleation in a boreal forest, Finland. Atmospheric Chemistry and Physics, 2010, 10(8): 3743–3757

    Article  Google Scholar 

  56. Kulmala M, Riipinen I, Nieminen T, Hulkkonen M, Sogacheva L, Manninen H E, Paasonen P, Petäjä T, Dal Maso M, Aalto P P, Viljanen A, Usoskin I, Vainio R, Mirme S, Mirme A, Minikin A, Petzold A, Härrak U, Plaß-Dülmer C. Atmospheric data over a solar cycle: no connection between galactic cosmic rays and new particle formation. Atmospheric Chemistry and Physics, 2010, 10(4): 1885–1898

    Article  CAS  Google Scholar 

  57. Junninen H, Ehn M, Petäjä T, Luosujärvi L, Kotiaho T, Kostiainen R, Rohner U, Gonin M, Fuhrer K, Kulmala M, Worsnop D R. A high-resolution mass spectrometer to measure atmospheric ion composition. Atmospheric Measurement Techniques, 2010, 3(4): 1039–1053

    Article  CAS  Google Scholar 

  58. Jokinen T, Sipilä M, Junninen H, Ehn M, Lönn G, Hakala J, Petäjä T, Mauldin R L III, Kulmala M, Worsnop D R. Atmospheric sulfuric acid and neutral cluster measurements using CI-Api-TOF. Atmospheric Chemistry and Physics, 2012, 12(9): 4117–4125

    Article  CAS  Google Scholar 

  59. Petäjä T, Mauldin R L III, Kosciuch E, McGrath J, Nieminen T, Paasonen P, Boy M, Adamov A, Kotiaho T, Kulmala M. Sulfuric acid and OH concentrations in a boreal forest site. Atmospheric Chemistry and Physics, 2009, 9(19): 7435–7448

    Article  Google Scholar 

  60. Sipilä M, Berndt T, Petäjä T, Brus D, Vanhanen J, Stratmann F, Patokoski J, Mauldin R L 3rd, Hyvärinen A P, Lihavainen H, Kulmala M. The role of sulfuric acid in atmospheric nucleation. Science, 2010, 327(5970): 1243–1246

    Article  Google Scholar 

  61. Kirkby J, Curtius J, Almeida J, Dunne E, Duplissy J, Ehrhart S, Franchin A, Gagné S, Ickes L, Kürten A, Kupc A, Metzger A, Riccobono F, Rondo L, Schobesberger S, Tsagkogeorgas G, Wimmer D, Amorim A, Bianchi F, Breitenlechner M, David A, Dommen J, Downard A, Ehn M, Flagan R C, Haider S, Hansel A, Hauser D, Jud W, Junninen H, Kreissl F, Kvashin A, Laaksonen A, Lehtipalo K, Lima J, Lovejoy E R, Makhmutov V, Mathot S, Mikkilä J, Minginette P, Mogo S, Nieminen T, Onnela A, Pereira P, Petäjä T, Schnitzhofer R, Seinfeld J H, Sipilä M, Stozhkov Y, Stratmann F, Tomé A, Vanhanen J, Viisanen Y, Vrtala A, Wagner P E, Walther H, Weingartner E, Wex H, Winkler P M, Carslaw K S, Worsnop D R, Baltensperger U, Kulmala M. Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature, 2011, 476(7361): 429–433

    Article  CAS  Google Scholar 

  62. Almeida J, Schobesberger S, Kürten A, Ortega I K, Kupiainen-Määttä O, Praplan A P, Adamov A, Amorim A, Bianchi F, Breitenlechner M, David A, Dommen J, Donahue N M, Downard A, Dunne E, Duplissy J, Ehrhart S, Flagan R C, Franchin A, Guida R, Hakala J, Hansel A, Heinritzi M, Henschel H, Jokinen T, Junninen H, Kajos M, Kangasluoma J, Keskinen H, Kupc A, Kurtén T, Kvashin A N, Laaksonen A, Lehtipalo K, Leiminger M, Leppä J, Loukonen V, Makhmutov V, Mathot S, McGrath M J, Nieminen T, Olenius T, Onnela A, Petäjä T, Riccobono F, Riipinen I, Rissanen M, Rondo L, Ruuskanen T, Santos F D, Sarnela N, Schallhart S, Schnitzhofer R, Seinfeld J H, Simon M, Sipilä M, Stozhkov Y, Stratmann F, Tomé A, Tröstl J, Tsagkogeorgas G, Vaattovaara P, Viisanen Y, Virtanen A, Vrtala A, Wagner P E, Weingartner E, Wex H, Williamson C, Wimmer D, Ye P, Yli-Juuti T, Carslaw K S, Kulmala M, Curtius J, Baltensperger U, Worsnop D R, Vehkamäki H, Kirkby J. Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere. Nature, 2013, 502(7471): 359–363

    Article  CAS  Google Scholar 

  63. Petäjä T, Sipilä M, Paasonen P, Nieminen T, Kurtén T, Ortega I K, Stratmann F, Vehkamäki H, Berndt T, Kulmala M. Experimental observation of strongly bound dimers of sulfuric acid: application to nucleation in the atmosphere. Physical Review Letters, 2011, 106 (22): 228302

    Article  Google Scholar 

  64. Ehn M, Thornton J A, Kleist E, Sipilä M, Junninen H, Pullinen I, Springer M, Rubach F, Tillmann R, Lee B, Lopez-Hilfiker F, Andres S, Acir I H, Rissanen M, Jokinen T, Schobesberger S, Kangasluoma J, Kontkanen J, Nieminen T, Kurtén T, Nielsen L B, Jørgensen S, Kjaergaard H G, Canagaratna M, Maso M D, Berndt T, Petäjä T, Wahner A, Kerminen V M, Kulmala M, Worsnop D R, Wildt J, Mentel T F. A large source of low-volatility secondary organic aerosol. Nature, 2014, 506(7489): 476–479

    Article  CAS  Google Scholar 

  65. Riccobono F, Schobesberger S, Scott C E, Dommen J, Ortega I K, Rondo L, Almeida J, Amorim A, Bianchi F, Breitenlechner M, David A, Downard A, Dunne E M, Duplissy J, Ehrhart S, Flagan R C, Franchin A, Hansel A, Junninen H, Kajos M, Keskinen H, Kupc A, Kürten A, Kvashin A N, Laaksonen A, Lehtipalo K, Makhmutov V, Mathot S, Nieminen T, Onnela A, Petäjä T, Praplan A P, Santos F D, Schallhart S, Seinfeld J H, Sipilä M, Spracklen D V, Stozhkov Y, Stratmann F, Tomé A, Tsagkogeorgas G, Vaattovaara P, Viisanen Y, Vrtala A, Wagner P E, Weingartner E, Wex H, Wimmer D, Carslaw K S, Curtius J, Donahue N M, Kirkby J, Kulmala M, Worsnop D R, Baltensperger U. Oxidation products of biogenic emissions contribute to nucleation of atmospheric particles. Science, 2014, 344(6185): 717–721

    Article  CAS  Google Scholar 

  66. Mauldin R L 3rd, Berndt T, Sipilä M, Paasonen P, Petäjä T, Kim S, Kurtén T, Stratmann F, Kerminen V M, Kulmala M. A new atmospherically relevant oxidant of sulphur dioxide. Nature, 2012, 488(7410): 193–196

    Article  CAS  Google Scholar 

  67. Taipale R, Sarnela N, Rissanen M, Junninen H, Rantala P, Korhonen F, Siivola E, Berndt T, Kulmala M, Mauldin III R L, Petäjä T, Sipilä M. New instrument for measuring atmospheric concetrations of non-OH oxidants of SO2. Boreal Environment Research, 2014,19(B), 55–70

  68. Mauldin R L III, Rissanen M P, Petäjä T, Kulmala M. Furthering information from OH and HO2+ RO2 observations using a high resolution time of flight mass spectrometer. Atmospheric Measurement Techniques, 2016 doi:10.5194/amt-2015-398

    Google Scholar 

  69. Wiedensohler A, Birmili W, Nowak A, Sonntag A, Weinhold K, Merkel M, Wehner B, Tuch T, Pfeifer S, Fiebig M, Fjäraa A M, Asmi E, Sellegri K, Depuy R, Venzac H, Villani P, Laj P, Aalto P, Ogren J A, Swietlicki E, Williams P, Roldin P, Quincey P, Hüglin C, Fierz-Schmidhauser R, Gysel M, Weingartner E, Riccobono F, Santos S, Grüning C, Faloon K, Beddows D, Harrison R, Monahan C, Jennings S G, O’Dowd C D, Marinoni A, Horn H G, Keck L, Jiang J, Scheckman J, McMurry P H, Deng Z, Zhao C S, Moerman M, Henzing B, de Leeuw G, Löschau G, Bastian S. Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions. Atmospheric Measurement Techniques, 2012, 5(3): 657–685

    Article  CAS  Google Scholar 

  70. Hennessy S, Murphy P. The Potential for Collaborative Problem Solving in Design and Technology. International Journal of Technology and Design Education, 1999, 9(1): 1–36

    Article  Google Scholar 

  71. Nordic Climate Change Research 2009. NordForsk Policy Briefs 2009–8. Mandag Morgen, 2009

  72. Hari P, Kulmala M. Station for Measuring Ecosystem–Atmosphere Relations (SMEAR II). Environmental Research, 2005, 10(5): 315–322

    CAS  Google Scholar 

  73. Lappalainen H K. Pan-Eurasian Experiment (PEEX): Towards holistic understanding of the feedbacks and interactions in the land-atmosphere-ocean-society continuum in the Northern Eurasian region. Atmospheric Physic and Chemistry Dissussions (in review)

  74. Zhang J, Mauzerall D L, Zhu T, Liang S, Ezzati M, Remais J V. Environmental health in China: progress towards clean air and safe water. Lancet, 2010, 375(9720): 1110–1119

    Article  Google Scholar 

  75. Tang D, Wang C, Nie J, Chen R, Niu Q, Kan H, Chen B, Perera F. Health benefits of improving air quality in Taiyuan, China. Environment International, 2014, 73: 235–242

    Article  CAS  Google Scholar 

  76. Haines A, McMichael A J, Smith K R, Roberts I, Woodcock J, Markandya A, Armstrong B G, Campbell-Lendrum D, Dangour A D, Davies M, Bruce N, Tonne C, Barrett M, Wilkinson P. Public health benefits of strategies to reduce greenhouse-gas emissions: overview and implications for policy makers. Lancet, 2009, 374(9707): 2104–2114

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markku Kulmala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulmala, M., Petäjä, T., Kerminen, VM. et al. On secondary new particle formation in China. Front. Environ. Sci. Eng. 10, 8 (2016). https://doi.org/10.1007/s11783-016-0850-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-016-0850-1

Keywords

Navigation