Skip to main content
Log in

Molecular simulation of the interaction mechanism between CodY protein and DNA in Lactococcus lactis

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

In Lactococcus lactis, the global transcriptional regulatory factor CodY can interact with the promoter DNA to regulate the growth, metabolism, environmental adaptation and other biological activities of the strains. In order to study the mechanism of interaction between CodY and its target DNA, molecular docking and molecular dynamics simulations were used to explore the binding process at molecular level. Through the calculations of the free energy of binding, hydrogen bonding and energy decomposition, nine key residues of CodY were identified, corresponding to SER184, SER186, SER208, THR217, ARG218, SER219, ASN223, LYS242 and GLY243, among which SER186, ARG218 and LYS242 play a vital role in DNA binding. Our research results provide important theoretical guidance for using wet-lab methods to study and optimize the metabolic network regulated by CodY.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang J, Zhong J. The journey of nisin development in China, a natural-green food preservative. Protein & Cell, 2015, 6(10): 709–711

    Article  CAS  Google Scholar 

  2. Song A, In L, Lim S, Rahim R A. A review on Lactococcus lactis: From food to factory. Microbial Cell Factories, 2017, 16(1): 55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Papadimitriou K, Alegria A, Bron P A, Angelis M, Gobbetti M, Kleerebezem M. Stress physiology of lactic acid bacteria. Microbiology and Molecular Biology Reviews, 2016, 80(3): 837–890

    Article  CAS  PubMed  Google Scholar 

  4. McMahon D J, Oberg C J, Drake M A, Farkye N, Moyes L V, Arnold M R, Ganesan B, Steele J, Broadbent J R. Effect of sodium, potassium, magnesium, and calcium salt cations on pH, proteolysis, organic acids, and microbial populations during storage of full-fat cheddar cheese. Journal of Dairy Science, 2014, 97(8): 4780–4798

    Article  CAS  PubMed  Google Scholar 

  5. Laroute V, Yasaro C, Narin W, Mazzoli R, Pessione E, Loubiere P. GABA production in Lactococcus lactis is enhanced by arginine and co-addition of malate. Frontiers in Microbiology, 2016, 7: 1050

    Article  PubMed  PubMed Central  Google Scholar 

  6. Delcour J, Ferain T, Deghorain M, Palumbo E, Hols P. The biosynthesis and functionality of the cell-wall of lactic acid bacteria. Antonie van Leeuwenhoek, 1999, 76(1/4): 159–184

    Article  CAS  PubMed  Google Scholar 

  7. Hartke A, Bouche S, Giard J C, Benachour A, Boutibonnes P, Auffray Y. The lactic acid stress response of Lactococcus lactis subsp. lactis. Current Microbiology, 1996, 33(3): 194–199

    Article  CAS  PubMed  Google Scholar 

  8. Belitsky B R, Sonenshein A L. Genome-wide identification of Bacillus subtilis CodY-binding sites at single-nucleotide resolution. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(17): 7026–7031

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yuan T, Guo Y K, Dong J K, Li T Y, Zhou T, Sun K W, Zhang M, Wu Q Y, Xie Z, Cai Y Z, et al. Construction, characterization and application of a genome-wide promoter library in Saccharomyces cerevisiae. Frontiers of Chemical Science and Engineering, 2017, 11 (1): 107–116

    Article  CAS  Google Scholar 

  10. Levdikov V M, Blagova E, Young V L, Belitsky B R, Lebedev A, Sonenshein A L, Wilkinson A J. Structure of the branched-chain amino acid and GTP-sensing global regulator, CodY, from Bacillus subtilis. Journal of Biological Chemistry, 2017, 292(7): 2714–2728

    Article  CAS  PubMed  Google Scholar 

  11. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Klefer F, Cassarino T G, Bertonl M, Bordoli L, et al. Swissmodel: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research, 2014, 42(W1): W252–W258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Case D A, Darden T A, Cheatham T E III. AMBER 12. 2012

    Google Scholar 

  13. Adcock S A, Mccammon J A. Molecular dynamics: Survey of methods for simulating the activity of proteins. Chemical Reviews, 2006, 106(5): 1589–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Essmann U, Perera L, Berkowitz M, Darden T, Lee H, Pedersen L G. A smooth particle mesh Ewald method. Journal of Chemical Physics, 1998, 103(19): 8577–8593

    Article  Google Scholar 

  15. Colovos C, Yeates T O. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science, 1993, 2(9): 1511–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wiederstein M, Slppl M J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 2007, 35(Web Server): W407–W410

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ercan O, Wels M, Smid E J, Kleerebezem M. Molecular and metabolic adaptations of Lactococcus lactis at near-zero growth rates. Applied and Environmental Microbiology, 2015, 81(1): 320–331

    Article  PubMed  Google Scholar 

  18. Dijk M V, Bonvin A M. 3D-DART: A DNA structure modeling server. Nucleic Acids Research, 2009, 37(Web Server): W235–W239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dijk M V, Dijk A D, Hsu V, Boelens R, Bonvin A M. Informationdriven protein-DNA docking using HADDOCK: It is a matter of flexibility. Nucleic Acids Research, 2006, 34(11): 3317–3325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Massova I, Kollman P A. Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Perspectives in Drug Discovery and Design, 2000, 18(1): 113–135

    Article  CAS  Google Scholar 

  21. Kottalam J, Case D A. Langevin modes of macromolecules: Applications to crambin and DNA hexamers. Biopolymers, 1990, 29(10–11): 1409–1421

    Article  CAS  PubMed  Google Scholar 

  22. Sharp K A, Honig B. Electrostatic interactions in macromolecules: Theory and applications. Annual Review of Biophysics and Biophysical Chemistry, 1990, 19(1): 301–332

    Article  CAS  PubMed  Google Scholar 

  23. Sitkoff D, Sharp K A, Honig B. Accurate calculation of hydration free energies using macroscopic solvent models. Journal of Physical Chemistry, 1994, 98(7): 1978–1988

    Article  CAS  Google Scholar 

  24. Still W C, Tempczyk A, Hawley R C, Hendirckson T. Semianalytical treatment of solvation for molecular mechanics and dynamics. Journal of the American Chemical Society, 1990, 112 (16): 6127–6129

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper is financially supported by the National Natural Science Foundation of China (Grant No. 31570049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanni Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, L., Wu, H., Zhao, Y. et al. Molecular simulation of the interaction mechanism between CodY protein and DNA in Lactococcus lactis. Front. Chem. Sci. Eng. 13, 133–139 (2019). https://doi.org/10.1007/s11705-018-1737-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-018-1737-4

Keywords

Navigation