Skip to main content

Advertisement

Log in

Bariatric Surgery Resistance: Using Preoperative Lifestyle Medicine and/or Pharmacology for Metabolic Responsiveness

  • Review Article
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Bariatric surgery is an effective and durable treatment for individuals with obesity and its associated comorbidities. However, not all patients meet weight loss and/or cardiometabolic goals following bariatric surgery, suggesting that some people are bariatric surgery resistant. The reason for this resistance is unclear, but potential factors, such as adiposity-derived inflammation, insulin resistance, hyperglycemia, and aerobic fitness prior to surgery, have been related to blunted surgery responsiveness. Exercise, diet, and/or pharmacology are effective at reducing inflammation and improving insulin action as well as physical function. Herein, we present data that supports the novel hypothesis that intervening prior to surgery can enhance disease resolution in people who are resistant to bariatric surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ogden CL, Carroll MD, Kit BK, et al. Prevalence of childhood and adult obesity in the United States, 2011-2012. JAMA. 2014;311(8):806–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. McPhee JB, Schertzer JD. Immunometabolism of obesity and diabetes: microbiota link compartmentalized immunity in the gut to metabolic tissue inflammation. Clin Sci. 2015;129(12):1083–96.

    Article  CAS  PubMed  Google Scholar 

  3. Bastard JP, Maachi M, Lagathu C, et al. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw. 2006;17(1):4–12.

    CAS  PubMed  Google Scholar 

  4. Greenfield JR, Campbell LV. Insulin resistance and obesity. Clin Dermatol. 2004;22(4):289–95.

    Article  PubMed  Google Scholar 

  5. Finkelstein EA, Trogdon JG, Cohen JW, et al. Annual medical spending attributable to obesity: payer-and service-specific estimates. Health Aff. 2009;28(5):822–31.

    Article  Google Scholar 

  6. Schelbert KB. Comorbidities of obesity. Prim Care. 2009;36(2):271–85.

    Article  PubMed  Google Scholar 

  7. Barte JC, ter Bogt NC, Bogers RP, et al. Maintenance of weight loss after lifestyle interventions for overweight and obesity, a systematic review. Obes Rev. 2010;11(12):899–906.

    Article  CAS  PubMed  Google Scholar 

  8. Malin SK, Braun B. Impact of metformin on exercise-induced metabolic adaptations to lower type 2 diabetes risk. Exerc Sport Sci Rev. 2016;44(1):4–11.

    Article  PubMed  Google Scholar 

  9. Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403.

    Article  CAS  PubMed  Google Scholar 

  10. Solomon TP, Thyfault JP. Type 2 diabetes sits in a chair. Diabetes Obes Metab. 2013;15(11):987–92.

    Article  CAS  PubMed  Google Scholar 

  11. Li JF, Lai DD, Lin ZH, et al. Comparison of the long-term results of Roux-en-Y gastric bypass and sleeve gastrectomy for morbid obesity: a systematic review and meta-analysis of randomized and nonrandomized trials. Surg Laparosc Endosc Percutan Tech. 2014;24(1):1–11.

    Article  PubMed  Google Scholar 

  12. Robinson AH, Adler S, Stevens HB, et al. What variables are associated with successful weight loss outcomes for bariatric surgery after 1 year? Surg Obes Relat Dis. 2014;10(4):697–704.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Malin SK, Solomon TP, Blaszczak A, et al. Pancreatic beta-cell function increases in a linear dose-response manner following exercise training in adults with prediabetes. Am J Physiol Endocrinol Metab. 2013;305(10):E1248–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Peluso L, Vanek VW. Efficacy of gastric bypass in the treatment of obesity-related comorbidities. Nutr Clin Pract. 2007;22(1):22–8.

    Article  PubMed  Google Scholar 

  15. Schauer PR, Ikramuddin S, Gourash W, et al. Outcomes after laparoscopic Roux-en-Y gastric bypass for morbid obesity. Ann Surg. 2000;232(4):515–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ma Y, Pagoto SL, Olendzki BC, et al. Predictors of weight status following laparoscopic gastric bypass. Obes Surg. 2006;16(9):1227–31.

    Article  PubMed  Google Scholar 

  17. Hatoum IJ, Stein HK, Merrifield BF, et al. Capacity for physical activity predicts weight loss after Roux-en-Y gastric bypass. Obesity (Silver Spring). 2009;17(1):92–9.

    Article  Google Scholar 

  18. Sugerman HJ, DeMaria EJ, Kellum JM, et al. Effects of bariatric surgery in older patients. Ann Surg. 2004;240(2):243–7.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Livingston EH, Huerta S, Arthur D, et al. Male gender is a predictor of morbidity and age a predictor of mortality for patients undergoing gastric bypass surgery. Ann Surg. 2002;236(5):576–82.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cleasby ME, Jamieson PM, Atherton PJ. Insulin resistance and sarcopenia: mechanistic links between common co-morbidities. J Endocrinol. 2016;229(2):67–81.

    Article  CAS  Google Scholar 

  21. Bijlsma AY, Meskers CG, van Heemst D, et al. Diagnostic criteria for sarcopenia relate differently to insulin resistance. Age. 2013;35(6):2367–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hagobian TA, Evero N. Exercise and weight loss: what is the evidence of sex differences? Curr Obes Rep. 2013;2(1):86–92.

    Article  Google Scholar 

  23. Ding EL, Song Y, Malik VS, et al. Sex differences of endogenous sex hormones and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA. 2006;295(11):1288–99.

    Article  CAS  PubMed  Google Scholar 

  24. Hellstrom L, Wahrenberg H, Hruska K, et al. Mechanisms behind gender differences in circulating leptin levels. J Intern Med. 2000;247(4):457–62.

    Article  CAS  PubMed  Google Scholar 

  25. Kennedy A, Gettys TW, Watson P, et al. The metabolic significance of leptin in humans: gender-based differences in relationship to adiposity, insulin sensitivity, and energy expenditure. J Clin Endocrinol Metab. 1997;82(4):1293–300.

    CAS  PubMed  Google Scholar 

  26. Mantzoros CS. The role of leptin in human obesity and disease: a review of current evidence. Ann Intern Med. 1999;130(8):671–80.

    Article  CAS  PubMed  Google Scholar 

  27. Faerch K, Borch-Johnsen K, Vaag A, et al. Sex differences in glucose levels: a consequence of physiology or methodological convenience? The Inter99 study. Diabetologia. 2010;53(5):858–65.

    Article  CAS  PubMed  Google Scholar 

  28. Makovey J, Naganathan V, Seibel M, et al. Gender differences in plasma ghrelin and its relations to body composition and bone—an opposite-sex twin study. Clin Endocrinol. 2007;66(4):530–7.

    CAS  Google Scholar 

  29. Purnell JQ, Weigle DS, Breen P, et al. Ghrelin levels correlate with insulin levels, insulin resistance, and high-density lipoprotein cholesterol, but not with gender, menopausal status, or cortisol levels in humans. J Clin Endocrinol Metab. 2003;88(12):5747–52.

    Article  CAS  PubMed  Google Scholar 

  30. Anderson WA, Greene GW, Forse RA, et al. Weight loss and health outcomes in African Americans and whites after gastric bypass surgery. Obesity. 2007;15(6):1455–63.

    Article  PubMed  Google Scholar 

  31. Parikh M, Lo H, Chang C, et al. Comparison of outcomes after laparoscopic adjustable gastric banding in African-Americans and whites. Surg Obes Relat Dis. 2006;2(6):607–12.

    Article  PubMed  Google Scholar 

  32. Cossrow N, Falkner B. Race/ethnic issues in obesity and obesity-related comorbidities. J Clin Endocrinol Metab. 2004;89(6):2590–4.

    Article  CAS  PubMed  Google Scholar 

  33. Olson NC, Callas PW, Hanley AJ, et al. Circulating levels of TNF-alpha are associated with impaired glucose tolerance, increased insulin resistance, and ethnicity: the Insulin Resistance Atherosclerosis Study. J Clin Endocrinol Metab. 2012;97(3):1032–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kern PA, Ranganathan S, Li C, et al. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab. 2001;280(5):745–51.

    Google Scholar 

  35. Lindquist CH, Gower BA, Goran MI. Role of dietary factors in ethnic differences in early risk of cardiovascular disease and type 2 diabetes. Am J Clin Nutr. 2000;71(3):725–32.

    CAS  PubMed  Google Scholar 

  36. Conjeevaram HS, Kleiner DE, Everhart JE, et al. Race, insulin resistance and hepatic steatosis in chronic hepatitis C. Hepatology. 2007;45(1):80–7.

    Article  CAS  PubMed  Google Scholar 

  37. Gullick AA, Graham LA, Richman J, et al. Association of race and socioeconomic status with outcomes following laparoscopic Roux-en-Y gastric bypass. Obes Surg. 2015;25(4):705–11.

    Article  PubMed  Google Scholar 

  38. Lutfi R, Torquati A, Sekhar N, et al. Predictors of success after laparoscopic gastric bypass: a multivariate analysis of socioeconomic factors. Surg Endosc. 2006;20(6):864–7.

    Article  CAS  PubMed  Google Scholar 

  39. Kinzl JF, Schrattenecker M, Traweger C, et al. Psychosocial predictors of weight loss after bariatric surgery. Obes Surg. 2006;16(12):1609–14.

    Article  PubMed  Google Scholar 

  40. van Hout GC, Verschure SK, van Heck GL. Psychosocial predictors of success following bariatric surgery. Obes Surg. 2005;15(4):552–60.

    Article  PubMed  Google Scholar 

  41. Xu H, Barnes GT, Yang Q, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112(12):1821–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Brethauer SA, Heneghan HM, Eldar S, et al. Early effects of gastric bypass on endothelial function, inflammation, and cardiovascular risk in obese patients. Surg Endosc. 2011;25(8):2650–9.

    Article  PubMed  Google Scholar 

  43. Madsen EL, Rissanen A, Bruun JM, et al. Weight loss larger than 10% is needed for general improvement of levels of circulating adiponectin and markers of inflammation in obese subjects: a 3-year weight loss study. Eur J Endocrinol. 2008;158(2):179–87.

    Article  CAS  PubMed  Google Scholar 

  44. Heneghan HM, Huang H, Kashyap SR, et al. Reduced cardiovascular risk after bariatric surgery is linked to plasma ceramides, apolipoprotein-B100, and ApoB100/A1 ratio. Surg Obes Relat Dis. 2013;9(1):100–7.

    Article  PubMed  Google Scholar 

  45. Malin SK, Bena J, Abood B, et al. Attenuated improvements in adiponectin and fat loss characterize type 2 diabetes non-remission status after bariatric surgery. Diabetes Obes Metab. 2014;16(12):1230–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hirsch FF, Pareja JC, Geloneze SR, et al. Comparison of metabolic effects of surgical-induced massive weight loss in patients with long-term remission versus non-remission of type 2 diabetes. Obes Surg. 2012;22(6):910–7.

    Article  PubMed  Google Scholar 

  47. Weyer C, Funahashi T, Tanaka S, et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab. 2001;86(5):1930–5.

    Article  CAS  PubMed  Google Scholar 

  48. Arita Y, Kihara S, Ouchi N, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. 1999. Biochem Biophys Res Commun. 2012;425(3):560–4.

    Article  CAS  PubMed  Google Scholar 

  49. Yang WS, Lee WJ, Funahashi T, et al. Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin. J Clin Endocrinol Metab. 2001;86(8):3815–9.

    Article  CAS  PubMed  Google Scholar 

  50. Kahn SE, Cooper ME, Del Prato S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet. 2014;383(9922):1068–83.

    Article  CAS  PubMed  Google Scholar 

  51. Gavin TP, Ernst JM, Caudill SE, et al. Insulin sensitivity is related to glycemic control in type 2 diabetes and diabetes remission after Roux-en Y gastric bypass. Surgery. 2014;155(6):1036–43.

    Article  PubMed  Google Scholar 

  52. Vella A. Beta-cell function after weight-loss induced by bariatric surgery. Physiology. 2014;29(2):84–5.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Torquati A, Lutfi R, Abumrad N, et al. Roux-en-Y gastric bypass surgery the most effective treatment for type 2 diabetes mellitus in morbidly obese patients? J Gastrointest Surg. 2005;9(8):1112–8.

    Article  PubMed  Google Scholar 

  54. Hall TC, Pellen MG, Sedman PC, et al. Preoperative factors predicting remission of type 2 diabetes mellitus after Roux-en-Y gastric bypass surgery for obesity. Obes Surg. 2010;20(9):1245–50.

    Article  PubMed  Google Scholar 

  55. Wang GF, Yan YX, Xu N, et al. Predictive factors of type 2 diabetes mellitus remission following bariatric surgery: a meta-analysis. Obes Surg. 2015;25(2):199–208.

    Article  PubMed  Google Scholar 

  56. Mehaffey JH, Mullen MG, Mehaffey RL, et al. Type 2 diabetes remission following gastric bypass: does DiaRem stand the test of time? Surg Endosc. 2017;31(2):538–42.

  57. Khanna V, Malin SK, Bena J, et al. Adults with long-duration type 2 diabetes have blunted glycemic and beta-cell function improvements after bariatric surgery. Obesity (Silver Spring). 2015;23(3):523–6.

    Article  CAS  Google Scholar 

  58. Nguyen NQ, Game P, Bessell J, et al. Outcomes of Roux-en-Y gastric bypass and laparoscopic adjustable gastric banding. World J Gastroenterol. 2013;19(36):6035–43.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Steinbrook R. Surgery for severe obesity. N Engl J Med. 2004;350(11):1075–9.

    Article  CAS  PubMed  Google Scholar 

  60. Fernandez AZ, DeMaria EJ, Tichansky DS, et al. Experience with over 3,000 open and laparoscopic bariatric procedures: multivariate analysis of factors related to leak and resultant mortality. Surg Endosc. 2004;18(2):193–7.

    Article  PubMed  Google Scholar 

  61. Longitudinal Assessment of Bariatric Surgery (LABS) Consortium, Flum DR, Belle SH, et al. Perioperative safety in the longitudinal assessment of bariatric surgery. N Engl J Med. 2009;361(5):445–54.

    Article  Google Scholar 

  62. Jacobi D, Ciangura C, Couet C, et al. Physical activity and weight loss following bariatric surgery. Obes Rev. 2011;12(5):366–77.

    Article  CAS  PubMed  Google Scholar 

  63. McCullough PA, Gallagher MJ, Dejong AT, et al. Cardiorespiratory fitness and short-term complications after bariatric surgery. Chest. 2006;130(2):517–25.

    Article  PubMed  Google Scholar 

  64. Bond DS, Jakicic JM, Unick JL, et al. Pre- to postoperative physical activity changes in bariatric surgery patients: self report vs. objective measures. Obesity. 2010;18(12):2395–7.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Trivax JE, Gallagher MJ, Alexander DV, et al. Poor aerobic fitness predicts complications associated with bariatric surgery. Chest. 2005;128(4)

  66. Berglind D, Willmer M, Eriksson U, et al. Longitudinal assessment of physical activity in women undergoing Roux-en-Y gastric bypass. Obes Surg. 2015;25(1):119–25.

    Article  PubMed  Google Scholar 

  67. Baillot A, Mampuya WM, Comeau E, et al. Feasibility and impacts of supervised exercise training in subjects with obesity awaiting bariatric surgery: a pilot study. Obes Surg. 2013;23(7):882–91.

    Article  CAS  PubMed  Google Scholar 

  68. Baillot A, Mampuya WM, Dionne IJ, et al. Impacts of supervised exercise training in addition to interdisciplinary lifestyle management in subjects awaiting bariatric surgery: a randomized controlled study. Obes Surg. 2016;26(11):2602–10.

  69. Tuomilehto J, Lindstrom J, Eriksson JG, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344(18):1343–50.

    Article  CAS  PubMed  Google Scholar 

  70. Henriksen EJ. Invited review: effects of acute exercise and exercise training on insulin resistance. J Appl Physiol. 2002;93(2):788–96.

    Article  CAS  PubMed  Google Scholar 

  71. Hawley JA. Exercise as a therapeutic intervention for the prevention and treatment of insulin resistance. Diabetes Metab Res Rev. 2004;20(5):383–93.

    Article  CAS  PubMed  Google Scholar 

  72. Mathur N, Pedersen BK. Exercise as a mean to control low-grade systemic inflammation. Mediators Inflamm. 2008;2008:6.

  73. Hopps E, Canino B, Caimi G. Effects of exercise on inflammation markers in type 2 diabetic subjects. Acta Diabetol. 2011;48(3):183–9.

    Article  CAS  PubMed  Google Scholar 

  74. Shah M, Snell PG, Rao S, et al. High-volume exercise program in obese bariatric surgery patients: a randomized, controlled trial. Obesity. 2011;19(9):1826–34.

    Article  PubMed  Google Scholar 

  75. Coen PM, Tanner CJ, Helbling NL, et al. Clinical trial demonstrates exercise following bariatric surgery improves insulin sensitivity. J Clin Invest. 2015;125(1):248–57.

    Article  PubMed  Google Scholar 

  76. Coen PM, Menshikova EV, Distefano G, et al. Exercise and weight loss improve muscle mitochondrial respiration, lipid partitioning, and insulin sensitivity after gastric bypass surgery. Diabetes. 2015;64(11):3737–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Stegen S, Derave W, Calders P, et al. Physical fitness in morbidly obese patients: effect of gastric bypass surgery and exercise training. Obes Surg. 2011;21(1):61–70.

    Article  PubMed  Google Scholar 

  78. Dube JJ, Allison KF, Rousson V, et al. Exercise dose and insulin sensitivity: relevance for diabetes prevention. Med Sci Sports Exerc. 2012;44(5):793–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Houmard JA, Tanner CJ, Slentz CA, et al. Effect of the volume and intensity of exercise training on insulin sensitivity. J Appl Physiol. 2004;96(1):101–6.

    Article  CAS  PubMed  Google Scholar 

  80. Hamer M, Stamatakis E. Metabolically healthy obesity and risk of all-cause and cardiovascular disease mortality. J Clin Endocrinol Metab. 2012;97(7):2482–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gletsu-Miller N, Wright BN. Mineral malnutrition following bariatric surgery. Adv Nutr. 2013;4:506–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Baldry EL, Leeder PC, Idris IR. Pre-operative dietary restriction for patients undergoing bariatric surgery in the UK: observational study of current practice and dietary effects. Obes Surg. 2014;24(3):416–21.

    Article  PubMed  Google Scholar 

  83. Livhits M, Mercado C, Yermilov I, et al. Preoperative predictors of weight loss following bariatric surgery: systematic review. Obes Surg. 2012;22(1):70–89.

    Article  PubMed  Google Scholar 

  84. Alami RS, Morton JM, Schuster R, et al. Is there a benefit to preoperative weight loss in gastric bypass patients? A prospective randomized trial. Surg Obes Relat Dis. 2007;3(2):141–6.

    Article  PubMed  Google Scholar 

  85. Sacks FM, Bray GA, Carey VJ, et al. Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N Engl J Med. 2009;360(9):859–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Van Nieuwenhove Y, Dambrauskas Z, Campillo-Soto A, et al. Preoperative very low-calorie diet and operative outcome after laparoscopic gastric bypass: a randomized multicenter study. Arch Surg. 2011;146(11):1300–5.

    Article  PubMed  Google Scholar 

  87. Huerta S, Dredar S, Hayden E, et al. Preoperative weight loss decreases the operative time of gastric bypass at a Veterans Administration hospital. Obes Surg. 2008;18(5):508–12.

    Article  PubMed  Google Scholar 

  88. Martin LF, Tan TL, Holmes PA, et al. Can morbidly obese patients safely lose weight preoperatively? Am J Surg. 1995;169(2):245–53.

    Article  CAS  PubMed  Google Scholar 

  89. Pournaras D, Nygren J, Hagstrom-Toft E, et al. Improved glucose metabolism after gastric bypass: evolution of the paradigm. Surg Obes Relat Dis. 2016;12:1457–65.

    Article  PubMed  Google Scholar 

  90. Machado M, Marques-Vidal P, Cortez-Pinto H. Hepatic histology in obese patients undergoing bariatric surgery. J Hepatol. 2006;45(4):600–6.

    Article  PubMed  Google Scholar 

  91. Nguyen NT, Longoria M, Gelfand DV, et al. Staged laparoscopic Roux-en-Y: a novel two-stage bariatric operation as an alternative in the super-obese with massively enlarged liver. Obes Surg. 2005;15(7):1077–81.

    Article  PubMed  Google Scholar 

  92. van Wissen J, Bakker N, Doodeman HJ, et al. Preoperative methods to reduce liver volume in bariatric surgery: a systematic review. Obes Surg. 2016;26(2):251–6.

    Article  PubMed  Google Scholar 

  93. Yki-Jarvinen H. Fat in the liver and insulin resistance. Ann Med. 2005;37(5):347–56.

    Article  PubMed  CAS  Google Scholar 

  94. Edholm D, Kullberg J, Haenni A, et al. Preoperative 4-week low-calorie diet reduces liver volume and intrahepatic fat, and facilitates laparoscopic gastric bypass in morbidly obese. Obes Surg. 2011;21(3):345–50.

    Article  PubMed  Google Scholar 

  95. Brody F, Vaziri K, Garey C, et al. Preoperative liver reduction utilizing a novel nutritional supplement. J Laparoendosc Adv Surg Tech A. 2011;21(6):491–5.

    Article  PubMed  Google Scholar 

  96. Colles SL, Dixon JB, Marks P, et al. Preoperative weight loss with a very-low-energy diet: quantitation of changes in liver and abdominal fat by serial imaging. Am J Clin Nutr. 2006;84(2):304–11.

    CAS  PubMed  Google Scholar 

  97. Alvarado R, Alami RS, Hsu G, et al. The impact of preoperative weight loss in patients undergoing laparoscopic Roux-en-Y gastric bypass. Obes Surg. 2005;15(9):1282–6.

    Article  CAS  PubMed  Google Scholar 

  98. Dagogo-Jack S, Alberti GM. Management of diabetes mellitus in surgical patients. Diabetes Spectrum. 2002;15(1):44–8.

    Article  Google Scholar 

  99. Gonzalez-Perez J, Sanchez-Leenheer S, Delgado AR, et al. Clinical impact of a 6-week preoperative very low calorie diet on body weight and liver size in morbidly obese patients. Obes Surg. 2013;23(10):1624–31.

    Article  PubMed  Google Scholar 

  100. Rector RS, Warner SO, Liu Y, et al. Exercise and diet induced weight loss improves measures of oxidative stress and insulin sensitivity in adults with characteristics of the metabolic syndrome. Am J Physiol Endocrinol Metab. 2007;293(2):500–6.

    Article  CAS  Google Scholar 

  101. Coen PM, Goodpaster BH. A role for exercise after bariatric surgery?. Diabetes Obes Metab 2016;18(1):16–23.

  102. Dodson RM, Firoozmand A, Hyder O, et al. Impact of sarcopenia on outcomes following intra-arterial therapy of hepatic malignancies. J Gastrointest Surg. 2013;17(12):2123–32.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Psutka SP, Carrasco A, Schmit GD, et al. Sarcopenia in patients with bladder cancer undergoing radical cystectomy: impact on cancer-specific and all-cause mortality. Cancer 2014;120(18):2910–18.

  104. Carbone JW, McClung JP, Pasiakos SM. Skeletal muscle responses to negative energy balance: effects of dietary protein. Adv Nutr. 2012;3(2):119–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kalyani RR, Corriere M, Ferrucci L. Age-related and disease-related muscle loss: the effect of diabetes, obesity, and other diseases. Lancet Diabetes Endocrinol. 2014;2(10):819–29.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Ross R, Pedwell H, Rissanen J. Effects of energy restriction and exercise on skeletal muscle and adipose tissue in women as measured by magnetic resonance imaging. Am J Clin Nutr. 1995;61(6):1179–85.

    CAS  PubMed  Google Scholar 

  107. Pan DA, Lillioja S, Kriketos AD, et al. Skeletal muscle triglyceride levels are inversely related to insulin action. Diabetes. 1997;46(6):983–8.

    Article  CAS  PubMed  Google Scholar 

  108. Yokoyama H, Emoto M, Araki T, et al. Effect of aerobic exercise on plasma adiponectin levels and insulin resistance in type 2 diabetes. Diabetes Care. 2004;27(7):1756–8.

    Article  CAS  PubMed  Google Scholar 

  109. Haus JM, Solomon TP, Marchetti CM, et al. Free fatty acid-induced hepatic insulin resistance is attenuated following lifestyle intervention in obese individuals with impaired glucose tolerance. J Clin Endocrinol Metab. 2010;95(1):323–7.

    Article  CAS  PubMed  Google Scholar 

  110. Tamura Y, Tanaka Y, Sato F, et al. Effects of diet and exercise on muscle and liver intracellular lipid contents and insulin sensitivity in type 2 diabetic patients. J Clin Endocrinol Metab. 2005;90(6):3191–6.

    Article  CAS  PubMed  Google Scholar 

  111. Torgerson JS, Hauptman J, Boldrin MN, et al. XENical in the prevention of diabetes in obese subjects (XENDOS) study: a randomized study of orlistat as an adjunct to lifestyle changes for the prevention of type 2 diabetes in obese patients. Diabetes Care. 2004;27(1):155–61.

    Article  CAS  PubMed  Google Scholar 

  112. Scheen AJ, Van Gaal LF. Combating the dual burden: therapeutic targeting of common pathways in obesity and type 2 diabetes. Lancet Diabetes Endocrinol. 2014;2(11):911–22.

    Article  CAS  PubMed  Google Scholar 

  113. Garvey WT, Ryan DH, Look M, et al. Two-year sustained weight loss and metabolic benefits with controlled-release phentermine/topiramate in obese and overweight adults (SEQUEL): a randomized, placebo-controlled, phase 3 extension study. Am J Clin Nutr. 2012;95(2):297–308.

    Article  CAS  PubMed  Google Scholar 

  114. Garvey WT, Ryan DH, Henry R, et al. Prevention of type 2 diabetes in subjects with prediabetes and metabolic syndrome treated with phentermine and topiramate extended release. Diabetes Care. 2014;37(4):912–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Martin CK, Redman LM, Zhang J, et al. Lorcaserin, a 5-HT(2C) receptor agonist, reduces body weight by decreasing energy intake without influencing energy expenditure. J Clin Endocrinol Metab. 2011;96(3):837–45.

    Article  CAS  PubMed  Google Scholar 

  116. O’Neil PM, Smith SR, Weissman NJ, et al. Randomized placebo-controlled clinical trial of lorcaserin for weight loss in type 2 diabetes mellitus: the BLOOM-DM study. Obesity. 2012;20(7):1426–36.

    Article  PubMed  CAS  Google Scholar 

  117. Smith SR, Fujioka K, Gupta AK, et al. Combination therapy with naltrexone and bupropion for obesity reduces total and visceral adiposity. Diabetes Obes Metab. 2013;15(9):863–6.

    Article  CAS  PubMed  Google Scholar 

  118. Hollander P, Gupta AK, Plodkowski R, et al. Effects of naltrexone sustained-release/bupropion sustained-release combination therapy on body weight and glycemic parameters in overweight and obese patients with type 2 diabetes. Diabetes Care. 2013;36(12):4022–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Holst JJ, Vilsboll T, Deacon CF. The incretin system and its role in type 2 diabetes mellitus. Mol Cell Endocrinol. 2009;297(1–2):127–36.

    Article  CAS  PubMed  Google Scholar 

  120. Wood GC, Gerhard GS, Benotti P, et al. Preoperative use of incretins is associated with increased diabetes remission after RYGB surgery among patients taking insulin: a retrospective cohort analysis. Ann Surg. 2015;261(1):125–8.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Davies MJ, Bergenstal R, Bode B, et al. Efficacy of liraglutide for weight loss among patients with type 2 diabetes: the SCALE Diabetes Randomized Clinical Trial. JAMA. 2015;314(7):687–99.

    Article  CAS  PubMed  Google Scholar 

  122. Wadden TA, Hollander P, Klein S, et al. Weight maintenance and additional weight loss with liraglutide after low-calorie-diet-induced weight loss: the SCALE Maintenance randomized study. Int J Obes. 2013;37(11):1443–51.

    Article  CAS  Google Scholar 

  123. Rhee MK, Herrick K, Ziemer DC, et al. Many Americans have pre-diabetes and should be considered for metformin therapy. Diabetes Care. 2010;33(1):49–54.

    Article  CAS  PubMed  Google Scholar 

  124. DeFronzo RA. Banting lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009;58(4):773–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Nesto RW, Bell D, Bonow RO, et al. Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association. Diabetes Care. 2004;27(1):256–63.

    Article  CAS  PubMed  Google Scholar 

  126. Chaggar PS, Shaw SM, Williams SG. Review article: thiazolidinediones and heart failure. Diab Vasc Dis Res. 2009;6(3):146–52.

    Article  PubMed  Google Scholar 

  127. Dormandy J, Bhattacharya M, van Troostenburg de Bruyn AR, et al. Safety and tolerability of pioglitazone in high-risk patients with type 2 diabetes: an overview of data from PROactive. Drug Saf. 2009;32(3):187–202.

    Article  CAS  PubMed  Google Scholar 

  128. Kahn SE, Haffner SM, Heise MA, et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med. 2006;355(23):2427–43.

    Article  CAS  PubMed  Google Scholar 

  129. Dormandy JA, Charbonnel B, Eckland DJ, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet. 2005;366(9493):1279–89.

    Article  CAS  PubMed  Google Scholar 

  130. Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28.

    Article  CAS  PubMed  Google Scholar 

  131. Bennett WL, Maruthur NM, Singh S, et al. Comparative effectiveness and safety of medications for type 2 diabetes: an update including new drugs and 2-drug combinations. Ann Intern Med. 2011;154(9):602–13.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Yanovski SZ, Yanovski JA. Long-term drug treatment for obesity: a systematic and clinical review. JAMA. 2014;311(1):74–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Pi-Sunyer X, Blackburn G, et al. Reduction in weight and cardiovascular disease risk factors in individuals with type 2 diabetes: one-year results of the look AHEAD trial. Diabetes Care. 2007;30(6):1374–83.

    Article  PubMed  Google Scholar 

  134. Sjostrom L, Lindroos AK, Peltonen M, et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med. 2004;351(26):2683–93.

    Article  PubMed  Google Scholar 

  135. McGrice M, Don Paul K. Interventions to improve long-term weight loss in patients following bariatric surgery: challenges and solutions. Diabetes Metab Syndr Obes. 2015;8:263–74.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Stein J, Stier C, Raab H, et al. Review article: the nutritional and pharmacological consequences of obesity surgery. Aliment Pharmacol Ther. 2014;40(6):582–609.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the members of the Applied Metabolism and Physiology Laboratory for the helpful discussion on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

N.G. and S.K.M. were primarily responsible for the writing of the manuscript. A.P., S.K., A.W., J.K., and P.H. reviewed and edited the manuscript.

Corresponding author

Correspondence to Steven K. Malin.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethnical Approval Statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent Statement

Does not apply.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilbertson, N.M., Paisley, A.S., Kranz, S. et al. Bariatric Surgery Resistance: Using Preoperative Lifestyle Medicine and/or Pharmacology for Metabolic Responsiveness. OBES SURG 27, 3281–3291 (2017). https://doi.org/10.1007/s11695-017-2966-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-017-2966-1

Keywords

Navigation