Skip to main content
Log in

Disruption of functional connectivity among subcortical arousal system and cortical networks in temporal lobe epilepsy

  • ORIGINAL RESEARCH
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Growing evidence has demonstrated widespread brain network alterations in temporal lobe epilepsy (TLE). However, the relatively accurate portrait of the subcortical-cortical relationship for impaired consciousness in TLE remains unclear. We proposed that consciousness-impairing seizures may invade subcortical arousal system and corresponding cortical regions, resulting in functional abnormalities and information flow disturbances between subcortical and cortical networks. We performed resting-state fMRI in 26 patients with TLE and 30 matched healthy controls. All included patients were diagnosed with impaired awareness during focal temporal lobe seizures. Functional connectivity density was adopted to determine whether local or distant network alterations occurred in TLE, and Granger causality analysis (GCA) was utilized to assess the direction and magnitude of causal influence among these altered brain networks further. Patients showed increased local functional connectivity in several arousal structures, such as the midbrain, thalamus, and cortical regions including bilateral prefrontal cortex (PFC), left superior temporal pole, left posterior insula, and cerebellum (P < 0.05, FDR corrected). GCA analysis revealed that the casual effects among these regions in patients were significantly sparser than those in controls (P < 0.05, uncorrected), including decreased excitatory and inhibitory effects among the midbrain, thalamus and PFC, and decreased inhibitory effect from the cerebellum to PFC. These findings suggested that consciousness-impairing seizures in TLE are associated with functional alterations and disruption of information process between the subcortical arousal system and cortical network. Understanding the functional networks and innervation pathway involved in TLE can provide insights into the mechanism underlying seizure-related loss of consciousness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Berg, A. T. (2008). The natural history of mesial temporal lobe epilepsy. Current Opinion in Neurology, 21(2), 173–178. https://doi.org/10.1097/WCO.0b013e3282f36ccd.

    Article  PubMed  Google Scholar 

  • Blumenfeld, H. (2012). Impaired consciousness in epilepsy. Lancet Neurology, 11(9), 814–826. https://doi.org/10.1016/S1474-4422(12)70188-6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Blumenfeld, H., McNally, K. A., Vanderhill, S. D., Paige, A. L., Chung, R., Davis, K., Norden, A. D., Stokking, R., Studholme, C., Novotny Jr., E. J., Zubal, I. G., & Spencer, S. S. (2004). Positive and negative network correlations in temporal lobe epilepsy. Cerebral Cortex, 14(8), 892–902. https://doi.org/10.1093/cercor/bhh048.

    Article  PubMed  Google Scholar 

  • Bostan, A. C., Dum, R. P., & Strick, P. L. (2010). The basal ganglia communicate with the cerebellum. Proceedings of the National Academy of Sciences of the United States of America, 107(18), 8452–8456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braakman, H. M., Vaessen, M. J., Hofman, P. A., Debeij-van Hall, M. H., Backes, W. H., Vles, J. S., et al. (2011). Cognitive and behavioral complications of frontal lobe epilepsy in children: A review of the literature. Epilepsia, 52(5), 849–856. https://doi.org/10.1111/j.1528-1167.2011.03057.x.

    Article  PubMed  Google Scholar 

  • Danielson, N. B., Guo, J. N., & Blumenfeld, H. (2011). The default mode network and altered consciousness in epilepsy. [research support, N.I.H., extramural research support, non-U.S. Gov't review]. Behavioural Neurology, 24(1), 55–65. https://doi.org/10.3233/BEN-2011-0310.

    Article  PubMed  PubMed Central  Google Scholar 

  • de Lanerolle, N. C., Kim, J. H., Robbins, R. J., & Spencer, D. D. (1989). Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy. Brain Research, 495(2), 387–395.

    Article  PubMed  Google Scholar 

  • Edlow, B. L., Takahashi, E., Wu, O., Benner, T., Dai, G., Bu, L., Grant, P. E., Greer, D. M., Greenberg, S. M., Kinney, H. C., & Folkerth, R. D. (2012). Neuroanatomic connectivity of the human ascending arousal system critical to consciousness and its disorders. Journal of Neuropathology & Experimental Neurology, 71(6), 531–546.

    Article  Google Scholar 

  • Englot, D. J., & Blumenfeld, H. (2009). Consciousness and epilepsy: Why are complex-partial seizures complex? [research support, N.I.H., extramural research support, non-U.S. Gov't review]. Progress in Brain Research, 177, 147–170. https://doi.org/10.1016/S0079-6123(09)17711-7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Englot, D. J., Mishra, A. M., Mansuripur, P. K., Herman, P., Hyder, F., & Blumenfeld, H. (2008). Remote effects of focal hippocampal seizures on the rat neocortex. [research support, N.I.H., extramural research support, non-U.S. Gov't]. The Journal of Neuroscience, 28(36), 9066–9081. https://doi.org/10.1523/JNEUROSCI.2014-08.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Englot, D. J., Modi, B., Mishra, A. M., DeSalvo, M., Hyder, F., & Blumenfeld, H. (2009). Cortical deactivation induced by subcortical network dysfunction in limbic seizures. [research support, N.I.H., extramural research support, non-U.S. Gov't]. The Journal of Neuroscience, 29(41), 13006–13018. https://doi.org/10.1523/JNEUROSCI.3846-09.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Englot, D. J., Konrad, P. E., & Morgan, V. L. (2016). Regional and global connectivity disturbances in focal epilepsy, related neurocognitive sequelae, and potential mechanistic underpinnings. Epilepsia, 57(10), 1546–1557.

    Article  PubMed  PubMed Central  Google Scholar 

  • Englot, D. J., D'Haese, P. F., Konrad, P. E., Jacobs, M. L., Gore, J. C., Abou-Khalil, B. W., et al. (2017). Functional connectivity disturbances of the ascending reticular activating system in temporal lobe epilepsy. Journal of Neurology, Neurosurgery, and Psychiatry, 88(11), 925–932. https://doi.org/10.1136/jnnp-2017-315732.

    Article  PubMed  PubMed Central  Google Scholar 

  • Escueta, A. V., Kunze, U., Waddell, G., Boxley, J., & Nadel, A. (1977). Lapse of consciousness and automatisms in temporal lobe epilepsy: A videotape analysis. Neurology, 27(2), 144–155.

    Article  CAS  PubMed  Google Scholar 

  • Galanopoulou, A. S., & Moshe, S. L. (2009). The epileptic hypothesis: Developmentally related arguments based on animal models. Epilepsia, 50(Suppl 7), 37–42. https://doi.org/10.1111/j.1528-1167.2009.02217.x.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goebel, R., Roebroeck, A., Kim, D. S., & Formisano, E. (2003). Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and granger causality mapping. [research support, non-U.S. Gov't]. Magnetic Resonance Imaging, 21(10), 1251–1261.

    Article  PubMed  Google Scholar 

  • Granger, C. W. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica: Journal of the Econometric Society, 37, 424–438.

    Article  Google Scholar 

  • Grodd, W. (2001). Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Human Brain Mapping, 13(2), 55–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton, J. P., Chen, G., Thomason, M. E., Schwartz, M. E., & Gotlib, I. H. (2011). Investigating neural primacy in major depressive disorder: Multivariate granger causality analysis of resting-state fMRI time-series data. Molecular Psychiatry, 16(7), 763–772.

    Article  CAS  PubMed  Google Scholar 

  • He, X., Doucet, G. E., Sperling, M., Sharan, A., & Tracy, J. I. (2015). Reduced thalamocortical functional connectivity in temporal lobe epilepsy. Epilepsia, 56(10), 1571–1579. https://doi.org/10.1111/epi.13085.

    Article  PubMed  Google Scholar 

  • Henderson, L. A., Rubin, T. K., & Macefield, V. G. (2011). Within-limb somatotopic representation of acute muscle pain in the human contralateral dorsal posterior insula. Human Brain Mapping, 32(10), 1592–1601.

    Article  PubMed  Google Scholar 

  • Ji, G. J., Zhang, Z., Zhang, H., Wang, J., Liu, D. Q., Zang, Y. F., Liao, W., & Lu, G. (2013). Disrupted causal connectivity in mesial temporal lobe epilepsy. PLoS One, 8(5), e63183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kros, L., Eelkman Rooda, O. H., Spanke, J. K., Alva, P., Dongen, M. N., Karapatis, A., et al. (2015). Cerebellar output controls generalized spike-and-wave discharge occurrence. Annals of Neurology, 77(6), 1027–1049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laufs, H., Hamandi, K., Salek-Haddadi, A., Kleinschmidt, A. K., Duncan, J. S., & Lemieux, L. (2007). Temporal lobe interictal epileptic discharges affect cerebral activity in “default mode” brain regions. Human Brain Mapping, 28(10), 1023–1032.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, K. H., Meador, K. J., Park, Y. D., King, D. W., Murro, A. M., Pillai, J. J., & Kaminski, R. J. (2002). Pathophysiology of altered consciousness during seizures: Subtraction SPECT study. [comparative study]. Neurology, 59(6), 841–846.

    Article  CAS  PubMed  Google Scholar 

  • Liao, W., Zhang, Z., Pan, Z., Mantini, D., Ding, J., Duan, X., Luo, C., Lu, G., & Chen, H. (2010). Altered functional connectivity and small-world in mesial temporal lobe epilepsy. PLoS One, 5(1), e8525.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moruzzi, G., & Magoun, H. W. (1995). Brain stem reticular formation and activation of the EEG. 1949. J Neuropsychiatry Clin Neurosci, 7(2), 251–267. https://doi.org/10.1176/jnp.7.2.251.

    Article  CAS  PubMed  Google Scholar 

  • Motelow, J. E., Li, W., Zhan, Q., Mishra, A. M., Sachdev, R. N., Liu, G., et al. (2015). Decreased subcortical cholinergic arousal in focal seizures. [research support, N.I.H., extramural research support, non-U.S. Gov't]. Neuron, 85(3), 561–572. https://doi.org/10.1016/j.neuron.2014.12.058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palaniyappan, L., Simmonite, M., White, T. P., Liddle, E. B., & Liddle, P. F. (2013). Neural primacy of the salience processing system in schizophrenia. [research support, non-U.S. Gov't]. Neuron, 79(4), 814–828. https://doi.org/10.1016/j.neuron.2013.06.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parks, E. L., & Madden, D. J. (2013). Brain connectivity and visual attention. Brain Connectivity, 3(4), 317–338. https://doi.org/10.1089/brain.2012.0139.

    Article  PubMed  PubMed Central  Google Scholar 

  • Parvizi, J., & Damasio, A. (2001). Consciousness and the brain. Neuroscience & Behavioral Physiology, 79(1), 135–160.

    CAS  Google Scholar 

  • Pedersen, M., Curwood, E. K., Vaughan, D. N., Omidvarnia, A. H., & Jackson, G. D. (2016). Abnormal brain areas common to the focal epilepsies: Multivariate pattern analysis of fMRI. [research support, non-U.S. Gov't]. Brain Connectivity, 6(3), 208–215. https://doi.org/10.1089/brain.2015.0367.

    Article  PubMed  Google Scholar 

  • Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage, 59(3), 2142–2154. https://doi.org/10.1016/j.neuroimage.2011.10.018.

    Article  PubMed  Google Scholar 

  • Proposal for revised classification of epilepsies and epileptic syndromes. Commission on Classification and Terminology of the International League Against Epilepsy. (1989). Epilepsia, 30(4), 389–399.

    Article  Google Scholar 

  • Proposal for revised clinical and electroencephalographic classification of epileptic seizures. From the Commission on Classification and Terminology of the International League Against Epilepsy. (1981). Epilepsia, 22(4), 489–501.

    Article  Google Scholar 

  • Shamshiri, E. A., Tierney, T. M., Centeno, M., St Pier, K., Pressler, R. M., Sharp, D. J., Perani, S., Cross, J. H., & Carmichael, D. W. (2017). Interictal activity is an important contributor to abnormal intrinsic network connectivity in paediatric focal epilepsy. Human Brain Mapping, 38(1), 221–236.

    Article  PubMed  Google Scholar 

  • Sporns, O. (2009). From complex networks to intelligent systems: Springer Berlin Heidelberg, From Complex Networks to Intelligent Systems.

  • Squire, L. R. (2004). Memory systems of the brain: A brief history and current perspective. Neurobiology of Learning and Memory, 82(3), 171–177. https://doi.org/10.1016/j.nlm.2004.06.005.

    Article  PubMed  Google Scholar 

  • Steriade, M. (1970). Ascending control of thalamic and cortical responsiveness. [review]. International Review of Neurobiology, 12, 87–144.

    Article  CAS  PubMed  Google Scholar 

  • Theodore, W. H., Porter, R. J., & Penry, J. K. (1983). Complex partial seizures: clinical characteristics and differential diagnosis. Neurology, 33(9), 1115–1121.

    Article  CAS  PubMed  Google Scholar 

  • Tomasi, D., & Volkow, N. D. (2010). Functional connectivity density mapping. Proceedings of the National Academy of Sciences of the United States of America, 107(21), 9885–9890. https://doi.org/10.1073/pnas.1001414107.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ung, H., Cazares, C., Nanivadekar, A., Kini, L., Wagenaar, J., Becker, D., Krieger, A., Lucas, T., Litt, B., & Davis, K. A. (2017). Interictal epileptiform activity outside the seizure onset zone impacts cognition. Brain, 140(8), 2157–2168. https://doi.org/10.1093/brain/awx143.

    Article  PubMed  PubMed Central  Google Scholar 

  • Waites, A. B., Briellmann, R. S., Saling, M. M., Abbott, D. F., & Jackson, G. D. (2006). Functional connectivity networks are disrupted in left temporal lobe epilepsy. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology. Society, 59(2), 335–343.

    Google Scholar 

  • Wang, J., Wang, L., Zang, Y., Yang, H., Tang, H., Gong, Q., Chen, Z., Zhu, C., & He, Y. (2009). Parcellation-dependent small-world brain functional networks: A resting-state fMRI study. [research support, non-U.S. Gov't]. Human Brain Mapping, 30(5), 1511–1523. https://doi.org/10.1002/hbm.20623.

    Article  PubMed  Google Scholar 

  • Zang, Z. X., Yan, C. G., Dong, Z. Y., Huang, J., & Zang, Y. F. (2012). Granger causality analysis implementation on MATLAB: A graphic user interface toolkit for fMRI data processing. Journal of Neuroscience Methods, 203(2), 418–426. https://doi.org/10.1016/j.jneumeth.2011.10.006.

    Article  PubMed  Google Scholar 

  • Zeng, L. L., Shen, H., Liu, L., & Hu, D. (2014a). Unsupervised classification of major depression using functional connectivity MRI. Human Brain Mapping, 35(4), 1630–1641. https://doi.org/10.1002/hbm.22278.

    Article  PubMed  Google Scholar 

  • Zeng, L. L., Wang, D., Fox, M. D., Sabuncu, M., Hu, D., Ge, M., Buckner, R. L., & Liu, H. (2014b). Neurobiological basis of head motion in brain imaging. Proceedings of the National Academy of Sciences of the United States of America, 111(16), 6058–6062. https://doi.org/10.1073/pnas.1317424111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng, L.-L., Wang, H., Hu, P., Yang, B., Pu, W., Shen, H., Chen, X., Liu, Z., Yin, H., Tan, Q., Wang, K., & Hu, D. (2018). Multi-site diagnostic classification of schizophrenia using discriminant deep learning with functional connectivity MRI. EBioMedicine, 30, 74–85.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, Z., Liao, W., Xu, Q., Wei, W., Zhou, H. J., Sun, K., Yang, F., Mantini, D., Ji, X., & Lu, G. (2017). Hippocampus-associated causal network of structural covariance measuring structural damage progression in temporal lobe epilepsy. Human Brain Mapping, 38(2), 753–766. https://doi.org/10.1002/hbm.23415.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to the patients and volunteers for participating in this study. This work was supported by the National Natural Science Foundation of China (81771407, 61533006, and 81471653).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huafu Chen or Li Feng.

Ethics declarations

Conflict of interest

Rong Li, Chongyu Hu, Liangcheng Wang, Ding Liu, Dingyang Liu, Wei Liao, Bo Xiao, Huafu Chen and Li Feng declare that they have no conflict of interest.

Informed consent

All procedures followed were in accordance with the ethnical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinksi Declaration of 1975, and the applicable revisions at the time of the investigation. Informed consent was obtained from all patients for being included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1274 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Hu, C., Wang, L. et al. Disruption of functional connectivity among subcortical arousal system and cortical networks in temporal lobe epilepsy. Brain Imaging and Behavior 14, 762–771 (2020). https://doi.org/10.1007/s11682-018-0014-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-018-0014-y

Keywords

Navigation