Skip to main content
Log in

Improving Impact Resistance of High-Velocity Oxygen Fuel-Sprayed WC-17Co Coating Using Taguchi Experimental Design

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The impact resistance of the WC-17Co coating as a function of high-velocity oxy-fuel thermal spraying process parameters was studied and presented in this paper. Design of experiments using Taguchi method and ANOVA were used for optimizing process parameters including grit type, spray distance, oxygen flow rate, carrier gas flow rate, powder feed rate, substrate preheat temperature and coating thickness to attain the maximum impact resistance in the coating. A falling mass impact tester apparatus was designed and fabricated for measuring the impact energy that was absorbed by each coating before failure. After each test, the cracks of each coating were observed under an optical microscope. According to the results, grit type was the most influential factor on increasing the impact resistance of the coatings and the effects of carrier gas flow rate, powder feed rate and substrate preheat temperature on impact resistance of the coatings were found to be negligible. The result of confirmation test showed that Taguchi method was a useful approach in predicting optimum parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. David, M. Athanasiou, K. Anthymidis, and P. Gotsis, Impact Fatigue Failure Investigation of HVOF Coatings, J. ASTM Int., 2008, 5(6), p 1-8

    Article  Google Scholar 

  2. S. Osawa, T. Itsukaichi, and R. Ahmed, Influence of Substrate Properties on the Impact Resistance of WC Cermet Coatings, J. Therm. Spray Technol., 2005, 14(4), p 495-501

    Article  Google Scholar 

  3. Z. Wang, Z.-B. Cai, Y. Sun, J.-F. Peng, and M.-H. Zhu, Low Velocity Impact Wear Behavior of MoS2/Pb Nanocomposite Coating under Controlled Kinetic Energy, Surf. Coat. Technol., 2017, 326, p 53-62

    Article  Google Scholar 

  4. M. Yasir, C. Zhang, W. Wang, Y. Jia, and L. Liu, Enhancement of Impact Resistance of Fe-Based Amorphous Coating by Al2O3 Dispersion, Mater. Lett., 2016, 171, p 112-116

    Article  Google Scholar 

  5. Z. Geng, S. Li, D. Duan, and Y. Liu, Wear Behaviour of WC–Co HVOF Coatings at Different Temperatures in Air and Argon, Wear, 2015, 330, p 348-353

    Article  Google Scholar 

  6. P. Chivavibul, M. Watanabe, S. Kuroda, J. Kawakita, M. Komatsu, K. Sato, and J. Kitamura, Effect of Powder Characteristics on Properties of Warm-Sprayed WC-Co Coatings, J. Therm. Spray Technol., 2010, 19(1-2), p 81-88

    Article  Google Scholar 

  7. S. Fayyazi, M.E. Bahrololoom, and M. Kasraei, Optimizing High-Velocity Oxygen Fuel-Sprayed WC–17Co Coating Using Taguchi Experimental Design to Improve Tribological Properties, Trans. Indian Inst. Met., 2018, 71(12), p 3045-3062

    Article  Google Scholar 

  8. S. Bouaricha, A. Ouchene, and J.-G. Legoux, Rietveld Analysis for Studying the Decarburisation in HVOF WC–Co Coatings, Surf. Eng., 2017, 34, p 1-8

    Google Scholar 

  9. R. Dehghannasiri, D. Xue, P.V. Balachandran, M.R. Yousefi, L.A. Dalton, T. Lookman, and E.R. Dougherty, Optimal Experimental Design for Materials Discovery, Comput. Mater. Sci., 2017, 129, p 311-322

    Article  Google Scholar 

  10. J.R. Davis, Handbook of Thermal Spray Technology, ASM international, Materials Park, 2004, p 85-86

    Google Scholar 

  11. K.-D. Bouzakis and A. Siganos, Fracture Initiation Mechanisms of Thin Hard Coatings During the Impact Test, Surf. Coat. Technol., 2004, 185(2--3), p 150-159

    Article  Google Scholar 

  12. J.P. Best, G. Guillonneau, S. Grop, A.A. Taylor, D. Frey, Q. Longchamp, T. Schär, M. Morstein, J.-M. Breguet, and J. Michler, High Temperature Impact Testing of a Thin Hard Coating Using a Novel High-Frequency in Situ Micromechanical Device, Surf. Coat. Technol., 2018, 333, p 178-186

    Article  Google Scholar 

  13. J. Batista, C. Godoy, and A. Matthews, Impact Testing of Duplex and Non-Duplex (Ti, Al) N and Cr–N PVD Coatings, Surf. Coat. Technol., 2003, 163, p 353-361

    Article  Google Scholar 

  14. K.-D. Bouzakis, S. Gerardis, G. Skordaris, and E. Bouzakis, Nano-Impact Test on a TiAlN PVD Coating and Correlation between Experimental and FEM Results, Surf. Coat. Technol., 2011, 206(7), p 1936-1940

    Article  Google Scholar 

  15. O. Knotek, B. Bosserhoff, A. Schrey, T. Leyendecker, O. Lemmer, and S. Esser, A New Technique for Testing the Impact Load of Thin Films: The Coating Impact Test, Surf. Coat. Technol., 1992, 54-55, p 102-107

    Article  Google Scholar 

  16. G. Bolelli, A. Milanti, L. Lusvarghi, L. Trombi, H. Koivuluoto, and P. Vuoristo, Wear and Impact Behaviour of High Velocity Air-Fuel Sprayed Fe–Cr-Ni-B-C Alloy Coatings, Tribol. Int., 2016, 95, p 372-390

    Article  Google Scholar 

  17. K. Bobzin, L. Zhao, M. Öte, T. Königstein, and M. Steeger, Impact Wear of an HVOF-Sprayed Cr3C2-NiCr Coating, Int. J. Refract. Met. Hard Mater., 2018, 70, p 191-196

    Article  Google Scholar 

  18. S.J. Yankee, B.J. Pletka, R.L. Salsbury, Quality Control of Hydroxyapatite Coatings: The Surface Preparation Stage, Proceedings of the Fourth National Thermal Spray Conference, 4–10 May, 1991 (Pittsburgh, PA, USA), p. 475–479

  19. Z. Mohammadi, A. Ziaei-Moayyed, and A.S.-M. Mesgar, Grit Blasting of Ti-6Al-4V Alloy: Optimization and Its Effect on Adhesion Strength of Plasma-Sprayed Hydroxyapatite Coatings, J. Mater. Process. Technol., 2007, 194(1-3), p 15-23

    Article  Google Scholar 

  20. W. Tillmann, P. Hollingsworth, I. Baumann, L. Hiegemann, C. Weddeling, A.E. Tekkaya, S. Rausch, and D. Biermann, Thermally Sprayed Finestructured WC-12Co Coatings Finished by Ball Burnishing and Grinding as an Innovative Approach to Protect Forming Tools against Wear, Surf. Coat. Technol., 2015, 268, p 134-141

    Article  Google Scholar 

  21. B. Torres, C. Taltavull, A. López, M. Campo, and J. Rams, Al/SiCp and Al11Si/SiCp Coatings on AZ91 Magnesium Alloy by HVOF, Surf. Coat. Technol., 2015, 261, p 130-140

    Article  Google Scholar 

  22. K. Murugan, A. Ragupathy, V. Balasubramanian, and K. Sridhar, Optimizing HVOF Spray Process Parameters to Attain Minimum Porosity and Maximum Hardness in WC-10Co-4Cr Coatings, Surf. Coat. Technol., 2014, 247, p 90-102

    Article  Google Scholar 

  23. E. Lugscheider, C. Herbst, and L. Zhao, Parameter Studies on High-Velocity Oxy-Fuel Spraying of MCrAlY Coatings, Surf. Coat. Technol., 1998, 108, p 16-23

    Article  Google Scholar 

  24. L. Baiamonte, F. Marra, S. Gazzola, P. Giovanetto, C. Bartuli, T. Valente, and G. Pulci, Thermal Sprayed Coatings for Hot Corrosion Protection of Exhaust Valves in Naval Diesel Engines, Surf. Coat. Technol., 2016, 295, p 78-87

    Article  Google Scholar 

  25. B. Rajasekaran, G. Mauer, R. Vaßen, A. Röttger, S. Weber, and W. Theisen, Thick Tool Steel Coatings Using HVOF Spraying for Wear Resistance Applications, Surf. Coat. Technol., 2010, 205(7), p 2449-2454

    Article  Google Scholar 

  26. R. Paredes, S. Amico, and A. d’Oliveira, The Effect of Roughness and Pre-Heating of the Substrate on the Morphology of Aluminium Coatings Deposited by Thermal Spraying, Surf. Coat. Technol., 2006, 200(9), p 3049-3055

    Article  Google Scholar 

  27. P. Saravanan, V. Selvarajan, M. Srivastava, D. Rao, S. Joshi, and G. Sundararajan, Study of Plasma-and Detonation Gun-Sprayed Alumina Coatings Using Taguchi Experimental Design, J. Therm. Spray Technol., 2000, 9(4), p 505-512

    Article  Google Scholar 

  28. R.K. Roy, A Primer on the Taguchi Method, Society of Manufacturing Engineers, 1990, p 231–232

  29. ASTM International. Standard Test Method for Resistance of Organic Coatings to the Effects of Rapid Deformation (Impact) (2010)

  30. E. ISO, Paints and Varnishes-Rapid-Deformation (Impact Resistance) Tests − Part1: Falling-Weight Test, Large Area Indenter, 6272-1, 2011

  31. Y.-C. Yang and E. Chang, Influence of Residual Stress on Bonding Strength and Fracture of Plasma-Sprayed Hydroxyapatite Coatings on Ti-6Al-4V Substrate, Biomaterials, 2001, 22(13), p 1827-1836

    Article  Google Scholar 

  32. G.-C. Ji, C.-J. Li, Y.-Y. Wang, and W.-Y. Li, Microstructural Characterization and Abrasive Wear Performance of HVOF Sprayed Cr3C2-NiCr Coating, Surf. Coat. Technol., 2006, 200(24), p 6749-6757

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeideh Fayyazi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fayyazi, S., Kasraei, M. & Bahrololoom, M.E. Improving Impact Resistance of High-Velocity Oxygen Fuel-Sprayed WC-17Co Coating Using Taguchi Experimental Design. J Therm Spray Tech 28, 706–716 (2019). https://doi.org/10.1007/s11666-019-00844-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-019-00844-6

Keywords

Navigation