Skip to main content

Advertisement

Log in

Graphene-Supported Platinum Catalyst-Based Membrane Electrode Assembly for PEM Fuel Cell

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The aim of this study is the preparation and characterization of a graphene-supported platinum (Pt) catalyst for proton exchange membrane fuel cell (PEMFC) applications. The graphene-supported Pt catalysts were prepared by chemical reduction of graphene and chloroplatinic acid (H2PtCl6) in ethylene glycol. X-ray powder diffraction, thermogravimetric analysis (TGA) and scanning electron microscopy have been used to analyze structure and surface morphology of the graphene-supported catalyst. The TGA results showed that the Pt loading of the graphene-supported catalyst was 31%. The proof of the Pt particles on the support surfaces was also verified by energy-dispersive x-ray spectroscopy analysis. The commercial carbon-supported catalyst and prepared Pt/graphene catalysts were used as both anode and cathode electrodes for PEMFC at ambient pressure and 70°C. The maximum power density was obtained for the Pt/graphene-based membrane electrode assembly (MEA) with H2/O2 reactant gases as 0.925 W cm2. The maximum current density of the Pt/graphene-based MEA can reach 1.267 and 0.43 A/cm2 at 0.6 V with H2/O2 and H2/air, respectively. The MEA prepared by the Pt/graphene catalyst shows good stability in long-term PEMFC durability tests. The PEMFC cell voltage was maintained at 0.6 V without apparent voltage drop when operated at 0.43 A/cm2 constant current density and 70°C for 400 h. As a result, PEMFC performance was found to be superlative for the graphene-supported Pt catalyst compared with the Pt/C commercial catalyst. The results indicate the graphene-supported Pt catalyst could be utilized as the electrocatalyst for PEMFC applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Chen, S.J. Andreasen, L. Rosendahl, S.K. Kær, and T. Condra, J. Electron. Mater. 39, 9 (2010).

    Google Scholar 

  2. I. Khazaee, M. Ghazikhani, and M. Mohammadiun, Sci. Iran. 19, 3 (2012).

    Article  Google Scholar 

  3. S. Sharma and B.G. Pollet, J. Power Sources 208, 96–119 (2012).

    Article  Google Scholar 

  4. A. Ghosh, S. Basu, and A. Verma, Fuel Cells 13, 3 (2013).

    Article  Google Scholar 

  5. E. Antolini, Appl. Catal. B 88, 1 (2009).

    Article  Google Scholar 

  6. M. Rahsepar, M. Pakshir, Y. Piao, and H. Kim, Fuel Cells 12, 15 (2012).

    Article  Google Scholar 

  7. Z. Ji, X. Shen, G. Zhu, K. Chen, G. Fu, and L. Tong, J. Electroanal. Chem. 682, 95 (2012).

    Article  Google Scholar 

  8. T.K. Lee, J.H. Jung, J.B. Kim, and S.H. Hur, Int. J. Hydrogen Energy 37, 23 (2012).

    Google Scholar 

  9. C.V. Rao, A.L.M. Reddy, Y. Ishikawa, and P.M. Ajayan, Carbon 49, 931 (2011).

    Article  Google Scholar 

  10. N.M. Julkapli and S. Bagheri, Int. J. Hydrogen Energy 40, 948 (2015).

    Article  Google Scholar 

  11. Y. He, C. Tong, L. Geng, L. Liu, and C. Lü, J. Membr. Sci. 458, 36 (2014).

    Article  Google Scholar 

  12. S. Gupta and S.B. Carrizosa, J. Electron. Mater. 44, 11 (2015).

    Google Scholar 

  13. A. Lerf, H. He, T. Riedl, M. Forster, and J. Klinowski, Solid State Ion. 101–103, 857 (1997).

    Article  Google Scholar 

  14. E. Antolini, Appl. Catal. B 123, 52 (2012).

    Article  Google Scholar 

  15. Y. Li, W. Gao, L. Ci, C. Wang, and P.M. Ajayan, Carbon 48, 1124 (2009).

    Article  Google Scholar 

  16. S. Sharma, A. Ganguly, P. Papakonstantinou, X. Miao, M. Li, J.L. Hutchison, M. Delichatsios, and S. Ukleja, J. Phys. Chem. C 114, 19459 (2010).

    Article  Google Scholar 

  17. Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff, Adv. Mater. 22, 3906 (2010).

    Article  Google Scholar 

  18. J. Shen, B. Yan, M. Shi, H. Ma, N. Li, and M. Ye, Mater. Res. Bull. 47, 1486 (2012).

    Article  Google Scholar 

  19. H.J. Choi, S.M. Jung, J.M. Seo, D.W. Chang, L. Dai, and J.B. Baek, Nano Energy 1, 534 (2012).

    Article  Google Scholar 

  20. Y. Shao, S. Zhang, C. Wang, Z. Nie, J. Liu, Y. Wang, and Y. Lin, J. Power Sources 195, 4600 (2010).

    Article  Google Scholar 

  21. J. Paredes, S. Villar-Rodil, A. Martinez-Alonso, and J. Tascon, Langmuir 24, 10560 (2008).

    Article  Google Scholar 

  22. S.H. Hsieh, M.C. Hsu, W.L. Liu, and W.J. Chen, Appl. Surf. Sci. 277, 223 (2013).

    Article  Google Scholar 

  23. M.A. Shah, Sci. Iran. 19, 3 (2012).

    Article  Google Scholar 

  24. J. Ma, L. Wang, X. Mua, and Y. Cao, J. Colloid Sci. 457, 102 (2015).

    Article  Google Scholar 

  25. B.D. Cullity, Elements of X-Ray Diffraction, 2nd ed. (Reading: Addison-Wesley, 1956), pp. 447–479.

    Google Scholar 

  26. G. Bozkurt, F. Memioglu, and A. Bayrakceken, Appl. Surf. Sci. 318, 223 (2014).

    Article  Google Scholar 

  27. O.A. Baturina, S.R. Aubuchon, and K.J. Wynne, Chem. Mater. 18, 1498 (2006).

    Article  Google Scholar 

  28. M.M. Gudarzi and F. Sharif, eXPRESS Polym. Lett. 6, 1017 (2012).

    Article  Google Scholar 

  29. M.G. Waller, M.R. Walluk, and T.A. Trabold, Int. J. Hydrogen Energy 41, 2944 (2016).

    Article  Google Scholar 

  30. C.H. Tsai, H. Ju, H.M. Lin, J.T. Tsai, S.M. Hwang, and Y.W. Chen-Yang, Int. J. Hydrogen Energy 36, 9831 (2011).

    Article  Google Scholar 

  31. S.H. Hur and J.N. Park, Asia–Pac. J. Chem. Eng. 8, 218 (2013).

    Google Scholar 

Download references

Acknowledgements

This study is supported by the Atilim University Research Project (Grant Number ATÜ-LAP-C-1415-02). We acknowledge Teksis (Turkey) for the MEA preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yilser Devrim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devrim, Y., Albostan, A. Graphene-Supported Platinum Catalyst-Based Membrane Electrode Assembly for PEM Fuel Cell. J. Electron. Mater. 45, 3900–3907 (2016). https://doi.org/10.1007/s11664-016-4703-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4703-2

Keywords

Navigation