Skip to main content
Log in

Agrobacterium tumefaciens-mediated transformation system for the important medicinal plant Dendrobium catenatum Lindl

  • Biotechnology
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

The orchid Dendrobium catenatum Lindl. has both ornamental and medicinal value. Studies on genetic transformation of other Dendrobium species have been reported; however, due to the heterogeneity among the Dendrobium species, an independent transformation system is required for optimum D. catenatum transformation. Agrobacterium tumefaciens-mediated transformation system for D. catenatum is reported herein. Three A. tumefaciens strains, GV3101, LBA4404, and EHA105, were tested for their ability to transform D. catenatum protocorms. It was found that infection with strain GV3101 at an OD600 of 0.6 yielded the highest transformation frequency of 56.5%. Addition of 0.001% (v/v) Triton™ X-100 or pretreatment with ultrasound (300 W, 40 kHz, 3 min) increased the transformation frequency by up to 2-fold. After 1 year, both green fluorescent protein (GFP) imaging and glucuronidase (GUS) histochemical analysis of transgenic plants demonstrated that DcObg-GFP and pDcObg-GUS construct DNA was transferred into the D. catenatum and expressed successfully. Functional and gene expression level analyses of transgenic plants containing a D. catenatum chloroplast-targeted homolog of Spo0B-associated GTP-binding protein (DcObgC) RNA interference construct (DcObgC-RNAi) further demonstrated that this transformation system was reliable and efficient for D. catenatum. The A. tumefaciens-based transformation protocol established and optimized in this current report could provide a powerful and efficient tool for academic research and genetic engineering-based breeding of D. catenatum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.

Similar content being viewed by others

References

  • Bang WY, Chen J, Jeong IS, Kim SW, Kim CW, Jung HS, Lee KH, Kweon HS, Yoko I, Shiina T, Bahk JD (2012) Functional characterization of ObgC in ribosome biogenesis during chloroplast development. Plant J 71:122–134

    Article  PubMed  CAS  Google Scholar 

  • Belarmino MM, Mii M (2000) Agrobacterium-mediated genetic transformation of a phalaenopsis orchid. Plant Cell Rep 19:435–442

    Article  CAS  PubMed  Google Scholar 

  • Beranová M, Rakouský S, Vávrová Z, Skalický T (2008) Sonication assisted Agrobacterium-mediated transformation enhances the transformation efficiency in flax (Linum usitatissimum L.). Plant Cell Tissue Organ Cult 94:253–259

    Article  Google Scholar 

  • Chai D, Yu H (2007) Recent advances in transgenic orchid production. Orchid Sci Biotechnol 1:34–39

    Google Scholar 

  • Chan MT, Chang HH, Ho SL, Tong WF, Yu SM (1993) Agrobacterium-mediated production of transgenic rice plants expressing a chimeric alpha-amylase promoter/beta-glucuronidase gene. Plant Mol Biol 22:491–506

    Article  PubMed  CAS  Google Scholar 

  • Chang C, Chen YC, Hsu YH, Wu JT, Hu CC, Chang WC, Lin NS (2005) Transgenic resistance to Cymbidium mosaic virus in Dendrobium expressing the viral capsid protein gene. Transgenic Res 14:41–46

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Deng F, Deng M, Han J, Chen J, Wang L, Yan S, Tong K, Liu F, Tian M (2016) Identification and characterization of a chloroplast-targeted Obg GTPase in Dendrobium officinale. DNA Cell Biol 35:802–811

    Article  PubMed  CAS  Google Scholar 

  • Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR, Conner TW, Wan Y (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chetty VJ, Ceballos N, Garcia D, Narváez-Vásquez J, Lopez W, Orozco-Cárdenas ML (2013) Evaluation of four Agrobacterium tumefaciens strains for the genetic transformation of tomato (Solanum lycopersicum L.) cultivar Micro-Tom. Plant Cell Rep 32:239–247

    Article  PubMed  CAS  Google Scholar 

  • Chin DP, Mishiba K, Mii M (2007) Agrobacterium-mediated transformation of protocorm-like bodies in Cymbidium. Plant Cell Rep 26:735–743

    Article  PubMed  CAS  Google Scholar 

  • Curtis IS, Nam HG (2001) Transgenic radish (Raphanus sativus L. longipinnatus Bailey) by floral-dip method—plant development and surfactant are important in optimizing transformation efficiency. Transgenic Res 10:363–371

    Article  PubMed  CAS  Google Scholar 

  • da Silva JAT (2013) Orchids: advances in tissue culture, genetics, phytochemistry and transgenic biotechnology. Floricult Ornam Biotechnol 7:1–52

    Google Scholar 

  • da Silva JAT, Dobranszki J, Cardoso JC, Chandler SF, Zeng S (2016) Methods for genetic transformation in Dendrobium. Plant Cell Rep 35:483–504

    Article  PubMed  CAS  Google Scholar 

  • da Silva JAT, Dong PC, Van PT, Mii M (2011) Transgenic orchids. Sci Hortic 130:673–680

    Article  CAS  Google Scholar 

  • Dehestani A, Ahmadian G, Salmanian A, Jelodar N, Kazemitabar K (2010) Transformation efficiency enhancement of Arabidopsis vacuum infiltration by surfactant application and apical inflorescence removal. Trakia J Sci 8:19–26

    Google Scholar 

  • Fan H, Wu Q, Wang X, Wu L, Cai Y, Lin Y (2016) Molecular cloning and expression of 1-deoxy-d-xylulose-5-phosphate synthase and 1-deoxy-d-xylulose-5-phosphate reductoisomerase in Dendrobium officinale. Plant Cell Tissue Organ Cult 125:381–385

    Article  CAS  Google Scholar 

  • Gaba V, Kathiravan K, Amutha S, Singer S, Xia X, Ananthakrishnan G (2008) The uses of ultrasound in plant tissue culture. Focus Biotechnol 6:417–426

    Google Scholar 

  • Gnasekaran P, James Antony JJ, Uddain J, Subramaniam S (2014) Agrobacterium-mediated transformation of the recalcitrant Vanda Kasem’s delight orchid with higher efficiency. Sci World J 2014:583934. https://doi.org/10.1155/2014/58393410

    Article  Google Scholar 

  • Gnasekaran P, Subramaniam S (2015) Mapping of the interaction between Agrobacterium tumefaciens and Vanda Kasem’s delight orchid protocorm-like bodies. Indian J Microbiol 55:1–7

    Article  CAS  Google Scholar 

  • Han ZF, Hunter DM, Sibbald S, Zhang JS, Tian L (2013) Biological activity of the tzs gene of nopaline Agrobacterium tumefaciens GV3101 in plant regeneration and genetic transformation. Mol Plant-Microbe Interact 26:1359–1365

    Article  PubMed  CAS  Google Scholar 

  • Hsiang-Chia L, Hong-Hwa C, Wen-Chieh T, Wen-Huei C, Hong-Ji S, Doris Chi-Ning C, Hsin-Hung Y (2007) Strategies for functional validation of genes involved in reproductive stages of orchids. Plant Physiol 143:558–569

    Google Scholar 

  • Hsieh MH, Lu HC, Pan ZJ, Yeh HH, Wang SS, Chen WH, Chen HH (2013) Optimizing virus-induced gene silencing efficiency with Cymbidium mosaic virus in Phalaenopsis flower. Plant Sci 201–202:25–41

    Article  PubMed  CAS  Google Scholar 

  • Ingham DJ, Beer S, Money S, Hansen G (2001) Quantitative real-time PCR assay for determining transgene copy number in transformed plants. BioTechniques 31:132–134 136-140

    Article  PubMed  CAS  Google Scholar 

  • Itaya A, Zheng S, Simmonds D (2018) Establishment of neomycin phosphotransferase II (nptII) selection for transformation of soybean somatic embryogenic cultures. In Vitro Cell Dev Biol-Plant: 1–11

  • Kerschen A, Napoli CA, Jorgensen RA, Müller AE (2004) Effectiveness of RNA interference in transgenic plants. FEBS Lett 566:223–228

    Article  PubMed  CAS  Google Scholar 

  • Kim MJ, Baek K, Park CM (2009) Optimization of conditions for transient Agrobacterium-mediated gene expression assays in Arabidopsis. Plant Cell Rep 28:1159–1167

    Article  PubMed  CAS  Google Scholar 

  • Liau CH, You SJ, Prasad V, Hsiao HH, Lu JC, Yang NS, Chan MT (2003) Agrobacterium tumefaciens-mediated transformation of an Oncidium orchid. Plant Cell Rep 21:993–998

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Dong H, Zeng S, Chen Z, Wu K, Zhang J, Duan J (2013) In planta transformation of Dendrobium nobile by ovary-injection of Agrobacterium. J South Chin Agric Univ 34:378–382

    Google Scholar 

  • Luo D, Qu C, Zhang Z, Xie J, Xu L, Yang H, Li C, Lin G, Wang H, Su Z (2017) Granularity and laxative effect of ultrafine powder of Dendrobium officinale. J Med Food 20:180–188

    Article  PubMed  CAS  Google Scholar 

  • Madhou P, Raghavan C, Wells A, Stevenson T (2006) Genome-wide microarray analysis of the effect of a surfactant application in Arabidopsis. Weed Res 46:275–283

    Article  CAS  Google Scholar 

  • Mason G, Provero P, Vaira AM, Accotto GP (2002) Estimating the number of integrations in transformed plants by quantitative real time PCR. BMC Biotechnol 2:20

    Article  PubMed  PubMed Central  Google Scholar 

  • Men S, Ming X, Liu R, Wei C, Li Y (2003) Agrobacterium-mediated genetic transformation of a Dendrobium orchid. Plant Cell Tissue Organ Cult 75:63–71

    Article  CAS  Google Scholar 

  • Meng Y, Yu D, Xue J, Lu J, Feng S, Shen C, Wang H (2016) A transcriptome-wide, organ-specific regulatory map of Dendrobium officinale, an important traditional Chinese orchid herb. Sci Rep 6:18864

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mishiba K, Chin DP, Mii M (2005) Agrobacterium-mediated transformation of Phalaenopsis by targeting protocorms at an early stage after germination. Plant Cell Rep 24:297–303

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Pawar BD, Jadhav AS, Chimote VP, Kale A, Pawar SV (2013) Effect of explants, bacterial cell density and overgrowth-control antibiotics on transformation efficiency in tomato (Solanum lycopersicum L.). J Appl Hortic 15:95–99

    Google Scholar 

  • Phlaetita W, Chin DP, Otang NV, Nakamura I, Mii M (2015) High efficiency Agrobacterium-mediated transformation of Dendrobium orchid using protocorms as a target material. Plant Biotechnol 32:323–327

    Article  CAS  Google Scholar 

  • Rani SB, Poh CD, Tokuhara K, Mii M (2007) Efficient production of transgenic plants of Vanda through sonication-assisted Agrobacterium-mediated transformation of protocorm-like bodies. Plant Biotechnol 24:429–434

    Article  Google Scholar 

  • Shi SH, Zou YG, Xu JX, Zhu YJ, Li JY (2009) Effect of different culture temperatures on the growth of Agrobacterium and regeneration of rice immature embryos. J Shanghai Normal Univ 38:183–188

    Google Scholar 

  • Simmons CW, VanderGheynst JS, Nitin N (2014) Attachment of Agrobacterium tumefaciens to leaf tissue in response to infiltration conditions. Biotechnol Prog 30:1137–1144

    Article  PubMed  CAS  Google Scholar 

  • Songstad DD, Somers DA, Griesbach RJ (1995) Advances in alternative DNA delivery techniques. Plant Cell Tissue Organ Cult 40:1–15

    Article  CAS  Google Scholar 

  • Sule S, Cursino L, Zheng D, Hoch HC, Burr TJ (2009) Surface motility and associated surfactant production in Agrobacterium vitis. Lett Appl Microbiol 49:596–601

    Article  PubMed  CAS  Google Scholar 

  • Sun HJ, Uchii S, Watanabe S, Ezura H (2006) A highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics. Plant Cell Physiol 47:426–431

    Article  PubMed  CAS  Google Scholar 

  • Suwanaketchanatit C, Piluek J, Peyachoknagul S, Huehne PS (2007) High efficiency of stable genetic transformation in Dendrobium orchid via microprojectile bombardment. Biol Plant 51:720–727

    Article  CAS  Google Scholar 

  • Tang W, Xiao B, Fei Y (2014) Slash pine genetic transformation through embryo cocultivation with A. tumefaciens and transgenic plant regeneration. In Vitro Cell Dev Biol-Plant 50:199–209

    Article  CAS  Google Scholar 

  • Toki S, Hara N, Ono K, Onodera H, Tagiri A, Oka S, Tanaka H (2006) Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice. Plant J 47:969–976

    Article  PubMed  CAS  Google Scholar 

  • Tomilov A, Tomilova N, Ogarkova O, Tarasov V (1999) Insertional mutagenesis of Arabidopsis thaliana: increase of germinating seeds transformation efficiency after sonication. Genetika 35:1214–1222

    PubMed  CAS  Google Scholar 

  • Trick HN, Finer JJ (1997) SAAT: sonication-assisted Agrobacterium-mediated transformation. Transgenic Res 6:329–336

    Article  CAS  Google Scholar 

  • Uddain J, Zakaria L, Lynn CB, Subramaniam S (2015) Preliminary assessment on Agrobacterium-mediated transformation of Dendrobium Broga Giant orchid’s PLBs. Emirates J Food Agric 27:669

    Article  Google Scholar 

  • Weng H, Pan A, Yang L, Zhang C, Liu Z, Zhang D (2004) Estimating number of transgene copies in transgenic rapeseed by real time PCR assay with HMG I/Y as an endogenous reference gene. Plant Mol Biol Rep 22:289–300

    Article  CAS  Google Scholar 

  • Withclass O (2001) Agrobacterium-mediated transformation of a Dendrobium orchid with the class 1 knox gene DOH1. Plant Cell Rep 20:301–305

    Article  CAS  Google Scholar 

  • Xing X, Cui SW, Nie S, Phillips GO, Goff HD, Wang Q (2013) A review of isolation process, structural characteristics, and bioactivities of water-soluble polysaccharides from Dendrobium plants. Bioact Carbohydr Diet Fibre 1:131–147

    Article  CAS  Google Scholar 

  • Yan L, Wang X, Liu H, Tian Y, Lian J, Yang R, Hao S, Wang X, Yang S, Li Q, Qi S, Kui L, Okpekum M, Ma X, Zhang J, Ding Z, Zhang G, Wang W, Dong Y, Sheng J (2015) The genome of Dendrobium officinale illuminates the biology of the important traditional Chinese orchid herb. Mol Plant 8:922–934

    Article  PubMed  CAS  Google Scholar 

  • Yang C, Qin Y, Liu W (2006) Preliminary study on effects of sonication on Agrobacterium-mediated transformation of Dendrobium nobile Lindl. Sichuan nongye daxue xuebao 24:455

    Google Scholar 

  • Ye J, Tang K, Shen D (1998) The methods for transferring genes into plants. Chin Bull Life Sci 11:58–60

    Google Scholar 

  • Zhang MB, Liang QZ, Xiao H, Cen P, Fan GQ, Pan LJ (2008) Study on Agrobacterium-mediated transformation of Dendrobium. Acta Hortic Sin 35:565–570

    CAS  Google Scholar 

  • Zhao J, Li ZT, Cui J, Henny RJ, Gray DJ, Xie J, Chen J (2013) Efficient somatic embryogenesis and Agrobacterium-mediated transformation of pothos (Epipremnum aureum) ‘Jade’. Plant Cell Tissue Organ Cult 114:237–247

    Article  CAS  Google Scholar 

  • Zhao Y, Liu Y, Lan X-M, Xu G-L, Sun Y-Z, Li F, Liu H-N (2016) Effect of Dendrobium officinale extraction on gastric carcinogenesis in rats. Evid Based Complement Alternat Med. Article ID 1213090. doi:https://doi.org/10.1155/2016/121309020168

  • Zheng Q, Zheng YP, Wang GD, Guo WM, Fan WF, Wang C (2012) Sonication-assisted Agrobacterium-mediated transformation of the ACC gene to interfere the production of ethylene in spring Dendrobium cv. ‘Sanya’. Russ J Plant Physiol 59:266–274

    Article  CAS  Google Scholar 

  • Zhu Y, Meng C, Zhu L, Li D, Jin Q, Song C, Cai Y, Fan H, Lin Y (2017) Cloning and characterization of DoMYC2 from Dendrobium officinale. Plant Cell Tissue Organ Cult 129:533–541

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by grants from The National Natural Science Foundation of China (No. 31501242) and The Education Department of Sichuan Province (No. 14ZB0013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengliang Tian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Editor: Harold Trick

Electronic supplementary material

Figure S1

Schematic map of the plasmid constructs used for the transformation in Dendrobium catenatum. Plasmids containing P600GUS construct were introduced into A. tumefaciens strains GV3101, LBA4404, and EHA105 for transformation and plasmids containing DcObgC-GFP, and DcObgC-RNAi constructs were introduced into Agrobacterium strain GV3101. LB left border; RB right border; hyg(r) hygromycin resistance gene; 35S cauliflower mosaic virus (CaMV) 35S promoter; gfp green fluorescent protein gene; DcObgC D. catenatum (Dc) chloroplast-targeted homolog of Spo0B-associated GTP-binding protein; P600 600 bp of DcObgC promoter; gus glucuronidase gene. (GIF 44 kb)

High Resolution Image (TIFF 378 kb)

Table S1

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Wang, L., Chen, J. et al. Agrobacterium tumefaciens-mediated transformation system for the important medicinal plant Dendrobium catenatum Lindl. In Vitro Cell.Dev.Biol.-Plant 54, 228–239 (2018). https://doi.org/10.1007/s11627-018-9903-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-018-9903-4

Keywords

Navigation