Skip to main content
Log in

Thermoelectricity in B80-based single-molecule junctions: First-principles investigation

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Thermoelectricity is a thermorelated property that is of great importance in single-molecule junctions. The electrical conductance (σ), electron-derived thermal conductance (κel) and Seebeck coefficient (S) of B80-based single-molecule junctions are investigated by using density functional theory in combination with non-equilibrium Green’s function. When the distance between the left/right electrodes is 11.4 Å, the relationship between σ and κel obeys the Wiedemann–Franz law very well because of the strong hybridization between B80 molecular orbitals and the surface states of Au electrodes. Furthermore, the calculated Lorenz number is close to the famous value in metal or degenerate semiconductors. In addition, S is only −19.09 μV/K at 300 K, thus leading to the smaller electron’s thermoelectric figure of merit (ZelT = S2σT/κel). Interestingly, the strain and chemical potential can modulate B80-based single-molecule junctions from n-type to p-type when the compressive strain reaches −0.6 Å or the chemical potential shifts to −0.16 eV. This might be attributed that S reflects the asymmetry in the electrical conductance with respect to the chemical potential and is proportional to the slopes of the transmission spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Aviram and M. A. Ratner, Molecular rectifiers, Chem. Phys. Lett. 29(2), 277 (1974)

    ADS  Google Scholar 

  2. X. Zheng, W. Lu, T. A. Abtew, V. Meunier, and J. Bernholc, Negative differential resistance in C60-based electronic devices, ACS Nano 4(12), 7205 (2010)

    Google Scholar 

  3. R. Liu, S. H. Ke, H. U. Baranger, and W. Yang, J. Am. Chem. Soc. 128, 2074 (2005)

    Google Scholar 

  4. T. A. Papadopoulos, I. M. Grace, and C. J. Lambert, Control of electron transport through Fano resonances in molecular wires, Phys. Rev. B 74(19), 193306 (2006)

    ADS  Google Scholar 

  5. W. Wang, T. Lee, and M. A. Reed, Mechanism of electron conduction in self-assembled alkanethiol monolayer devices, Phys. Rev. B 68(3), 035416 (2003)

    ADS  Google Scholar 

  6. H. Song, M. A. Reed, and T. Lee, Single molecule electronic devices, Adv. Mater. 23(14), 1583 (2011)

    Google Scholar 

  7. P. Reddy, S. Y. Jang, R. A. Segalman, and A. Majumdar, Thermoelectricity in molecular junctions, Science 315(5818), 1568 (2007)

    ADS  Google Scholar 

  8. M. Paulsson and S. Datta, Thermoelectric effect in molecular electronics, Phys. Rev. B 67(24), 241403 (2003)

    ADS  Google Scholar 

  9. C. Evangeli, K. Gillemot, E. Leary, M. T. Gonz’alez, G. Rubio-Bollinger, C. J. Lambert, and N. Agraït, Engineering the thermopower of C60 molecular junctions, Nano Lett. 13(5), 2141 (2013)

    ADS  Google Scholar 

  10. S. K. Yee, J. A. Malen, A. Majumdar, and R. A. Segalman, Thermoelectricity in fullerene–metal heterojunctions, Nano Lett. 11(10), 4089 (2011)

    ADS  Google Scholar 

  11. F. Hüser and G. C. Solomon, J. Phys. Chem. C 119, 14056 (2015)

    Google Scholar 

  12. Y. Dubi and M. Di Ventra, Colloquium: Heat flow and thermoelectricity in atomic and molecular junctions, Rev. Mod. Phys. 83(1), 131 (2011)

    ADS  Google Scholar 

  13. A. Shakouri, Recent developments in semiconductor thermoelectric physics and materials, Annu. Rev. Mater. Res. 41(1), 399 (2011)

    ADS  Google Scholar 

  14. M. Tsutsui, T. Morikawa, Y. He, A. Arima, and M. Taniguchi, High thermopower of mechanically stretched single-molecule junctions, Sci. Rep. 5(1), 11519 (2015)

    ADS  Google Scholar 

  15. A. Torres, R. B. Pontes, A. J. R. da Silva, and A. Fazzio, Tuning the thermoelectric properties of a single-molecule junction by mechanical stretching, Phys. Chem. Chem. Phys. 17(7), 5386 (2015)

    Google Scholar 

  16. R. Q. Wang, L. Sheng, R. Shen, B. Wang, and D. Y. Xing, Thermoelectric effect in single-molecule-magnet junctions, Phys. Rev. Lett. 105(5), 057202 (2010)

    ADS  Google Scholar 

  17. K. Yoshida, L. Hamada, S. Sakata, A. Umeno, M. Tsukada, and K. Hirakawa, Gate-tunable large negative tunnel magnetoresistance in Ni–C60–Ni single molecule transistors, Nano Lett. 13(2), 481 (2013)

    ADS  Google Scholar 

  18. A. Tan, J. Balachandran, S. Sadat, V. Gavini, B. D. Dunietz, S. Y. Jang, and P. Reddy, Effect of length and contact chemistry on the electronic structure and thermoelectric properties of molecular junctions, J. Am. Chem. Soc. 133(23), 8838 (2011)

    Google Scholar 

  19. Y. S. Liu and Y. C. Chen, Seebeck coefficient of thermoelectric molecular junctions: First-principles calculations, Phys. Rev. B 79(19), 193101 (2009)

    ADS  Google Scholar 

  20. I. Pallecchi, F. Telesio, D. Li, A. Fête, S. Gariglio, J. M. Triscone, A. Filippetti, P. Delugas, V. Fiorentini, and D. Marré, Giant oscillating thermopower at oxide interfaces, Nat. Commun. 6(1), 6678 (2015)

    ADS  Google Scholar 

  21. U. Sivan and Y. Imry, Multichannel Landauer formula for thermoelectric transport with application to thermopower near the mobility edge, Phys. Rev. B 33(1), 551 (1986)

    ADS  Google Scholar 

  22. X. Shi, L. D. Chen, S. Q. Bai, X. Y. Huang, X. Y. Zhao, Q. Yao, and C. Uher, Influence of fullerene dispersion on high temperature thermoelectric properties of BayCo4Sb12-based composites, J. Appl. Phys. 102(10), 103709 (2007)

    ADS  Google Scholar 

  23. C. A. Perroni, D. Ninno, and V. Cataudella, Electronvibration effects on the thermoelectric efficiency of molecular junctions, Phys. Rev. B 90(12), 125421 (2014)

    ADS  Google Scholar 

  24. G. D. Mahan and J. O. Sofo, The best thermoelectric, Proc. Natl. Acad. Sci. USA 93(15), 7436 (1996)

    ADS  Google Scholar 

  25. Y. S. Liu, B. C. Hsu, and Y. C. Chen, Effect of thermoelectric cooling in nanoscale junctions, J. Phys. Chem. C 115(13), 6111 (2011)

    Google Scholar 

  26. Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N. H. Seong, D. G. Cahill, and D. D. Dlott, Ultrafast flash thermal conductance of molecular chains, Science 317(5839), 787 (2007)

    ADS  Google Scholar 

  27. T. Shiota, A. I. Mares, A. M. C. Valkering, T. H. Oosterkamp, and J. M. van Ruitenbeek, Mechanical properties of Pt monatomic chains, Phys. Rev. B 77(12), 125411 (2008)

    ADS  Google Scholar 

  28. J. C. Klöckner, R. Siebler, J. C. Cuevas, and F. Pauly, Thermal conductance and thermoelectric figure of merit of C60-based single-molecule junctions: Electrons, phonons, and photons, Phys. Rev. B 95(24), 245404 (2017)

    ADS  Google Scholar 

  29. C. A. Perroni, D. Ninno, and V. Cataudella, Thermoelectric efficiency of molecular junctions, J. Phys.: Condens. Matter 28(37), 373001 (2016)

    Google Scholar 

  30. B. C. Hsu, C. W. Chiang, and Y. C. Chen, Effect of electron–vibration interactions on the thermoelectric efficiency of molecular junctions, Nanotechnology 23(27), 275401 (2012)

    Google Scholar 

  31. Y. Xue, S. Datta, and M. A. Ratner, First-principles based matrix Green’s function approach to molecular electronic devices: general formalism, Chem. Phys. 281(2–3), 151 (2002)

    Google Scholar 

  32. A. R. Rocha, V. M. García-Suárez, S. Bailey, C. Lambert, J. Ferrer, and S. Sanvito, Spin and molecular electronics in atomically generated orbital landscapes, Phys. Rev. B 73(8), 085414 (2006)

    ADS  Google Scholar 

  33. D. R. Hamann, M. Schlüter, and C. Chiang, Normconserving pseudopotentials, Phys. Rev. Lett. 43(20), 1494 (1979)

    ADS  Google Scholar 

  34. N. Troullier and J. L. Martins, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B 43(3), 1993 (1991)

    ADS  Google Scholar 

  35. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)

    ADS  Google Scholar 

  36. H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13(12), 5188 (1976)

    ADS  MathSciNet  Google Scholar 

  37. B. Kubala, J. König, and J. Pekola, Violation of the Wiedemann–Franz law in a single-electron transistor, Phys. Rev. Lett. 100(6), 066801 (2008)

    ADS  Google Scholar 

  38. G. Gómez-Silva, O. Ávalos-Ovando, M. L. Ladrón de Guevara, and P. A. Orellana, Enhancement of thermoelectric efficiency and violation of the Wiedemann–Franz law due to Fano effect, J. Appl. Phys. 111(5), 053704 (2012)

    ADS  Google Scholar 

  39. R. N. Wang, G. Y. Dong, S. F. Wang, G. S. Fu, and J. L. Wang, Impact of contact couplings on thermoelectric properties of anti, Fano, and Breit-Wigner resonant junctions, J. Appl. Phys. 120(18), 184303 (2016)

    ADS  Google Scholar 

  40. R. Stadler and T. Markussen, Controlling the transmission line shape of molecular t-stubs and potential thermoelectric applications, J. Chem. Phys. 135(15), 154109 (2011)

    ADS  Google Scholar 

  41. N. Hauptmann, F. Mohn, L. Gross, G. Meyer, T. Frederiksen, and R. Berndt, Force and conductance during contact formation to a C60 molecule, New J. Phys. 14(7), 073032 (2012)

    ADS  Google Scholar 

  42. K. S. Thygesen and A. Rubio, Renormalization of molecular quasiparticle levels at metal-molecule interfaces: Trends across binding regimes, Phys. Rev. Lett. 102(4), 046802 (2009)

    ADS  Google Scholar 

  43. H. Usui and K. Kuroki, Enhanced power factor and reduced Lorenz number in the Wiedemann–Franz law due to pudding mold type band structures, J. Appl. Phys. 121(16), 165101 (2017)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61704044, 11547170, 51772297, and 11464052, the Natural Science Foundation of Hebei Province under Grant No. A2017201219, and the Educational Commission of Hebei Province under Grant No. ZD2018030. The calculations were supported by the High-Performance Computing Center of Hebei University and the Institute of Engineering Thermophysics, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui-Ning Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhen, YX., Yang, M. & Wang, RN. Thermoelectricity in B80-based single-molecule junctions: First-principles investigation. Front. Phys. 14, 23603 (2019). https://doi.org/10.1007/s11467-018-0865-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-018-0865-0

Keywords

Navigation