Skip to main content

Advertisement

Log in

Failed PET Application Attempts in the Past, Can We Avoid Them in the Future?

  • Commentary
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Vargemezis V, Liakopoulos V, Kriki P et al (2010) Pivotal role of paricalcitol in the treatment of calcific uremic arteriolopathy in the presence of a parathyroid adenoma. Am J Kidney Dis 55:144–147

    Article  PubMed  Google Scholar 

  2. Basu S, Kwee TC, Surti S et al (2011) Fundamentals of PET and PET/CT imaging. Ann N Y Acad Sci 1228:1–18

    Article  CAS  PubMed  Google Scholar 

  3. Chopra A, Shan L, Eckelman WC et al (2012) Molecular Imaging and Contrast Agent Database (MICAD): evolution and progress. Mol Imaging Biol 14:4–13

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chitneni SK, Palmer GM, Zalutsky MR, Dewhirst MW (2011) Molecular imaging of hypoxia. J Nucl Med 52:165–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Carlin S, Humm JL (2012) PET of hypoxia: current and future perspectives. J Nucl Med 53:1171–1174

    Article  CAS  PubMed  Google Scholar 

  6. Bading JR, Shields AF (2008) Imaging of cell proliferation: status and prospects. J Nucl Med 49(Suppl 2):64S–80S

    Article  CAS  PubMed  Google Scholar 

  7. Sai KKS, Jones LA, Mach RH (2013) Development of 18F-labeled PET probes for imaging cell proliferation. Curr Top Med Chem 13:892–908

    Article  CAS  PubMed  Google Scholar 

  8. Tehrani OS, Shields AF (2013) PET imaging of proliferation with pyrimidines. J Nucl Med 54:903–912

    Article  CAS  PubMed  Google Scholar 

  9. Haberkorn U, Markert A, Mier W et al (2011) Molecular imaging of tumor metabolism and apoptosis. Oncogene 30:4141–4151

    Article  CAS  PubMed  Google Scholar 

  10. Hong H, Chen F, Zhang Y, Cai W (2014) New radiotracers for imaging of vascular targets in angiogenesis-related diseases. Adv Drug Deliv Rev 76:2–20

    Article  CAS  PubMed  Google Scholar 

  11. Haubner R, Beer AJ, Wang H, Chen X (2010) Positron emission tomography tracers for imaging angiogenesis. Eur J Nucl Med Mol Imaging 37(Suppl 1):S86–S103

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sekar TV, Dhanabalan A, Paulmurugan R (2011) Imaging cellular receptors in breast cancers: an overview. Curr Pharm Biotechnol 12:508–527

    Article  CAS  PubMed  Google Scholar 

  13. Kiyono Y, Mori T, Okazawa H (2012) Positron emission tomography radiopharmaceuticals for sex steroid hormone receptor imaging. Curr Med Chem 19:3266–3270

    Article  CAS  PubMed  Google Scholar 

  14. DiMasi JA, Reichert JM, Feldman L, Malins A (2013) Clinical approval success rates for investigational cancer drugs. Clin Pharmacol Ther 94:329–335

    Article  CAS  PubMed  Google Scholar 

  15. Li Z, Gifford A, Liu Q et al (2005) Candidate PET radioligands for cannabinoid CB1 receptors: [18F]AM5144 and related pyrazole compounds. Nucl Med Biol 32:361–366

    Article  CAS  PubMed  Google Scholar 

  16. Smith AL, Freeman SM, Stehouwer JS et al (2012) Synthesis and evaluation of C-11, F-18 and I-125 small molecule radioligands for detecting oxytocin receptors. Bioorg Med Chem 20:2721–2738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Risgaard R, Ettrup A, Balle T et al (2013) Radiolabelling and PET brain imaging of the alpha1-adrenoceptor antagonist Lu AE43936. Nucl Med Biol 40:135–140

    Article  CAS  PubMed  Google Scholar 

  18. Airaksinen AJ, Finnema SJ, Balle T et al (2013) Radiosynthesis and evaluation of new alpha1-adrenoceptor antagonists as PET radioligands for brain imaging. Nucl Med Biol 40:747–754

    Article  CAS  PubMed  Google Scholar 

  19. Wang C, Moseley CK, Carlin SM, Wilson CM, Neelamegam R, Hooker JM (2013) Radiosynthesis and evaluation of [11C]EMPA as a potential PET tracer for orexin 2 receptors. Bioorg Med Chem Lett 23:3389–3392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cole EL, Shao X, Sherman P et al (2014) Synthesis and evaluation of [11C]PyrATP-1, a novel radiotracer for PET imaging of glycogen synthase kinase-3beta (GSK-3beta). Nucl Med Biol 41:507–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moon BS, Carlson KE, Katzenellenbogen JA et al (2009) Synthesis and evaluation of aryl-substituted diarylpropionitriles, selective ligands for estrogen receptor beta, as positron-emission tomographic imaging agents. Bioorg Med Chem 17:3479–3488

    Article  CAS  PubMed  Google Scholar 

  22. Ding M, Ghanekar S, Elmore CS et al (2012) [H]Chiba-1001(methyl-SSR180711) has low in vitro binding affinity and poor in vivo selectivity to nicotinic alpha-7 receptor in rodent brain. Synapse 66:315–322

    Article  CAS  PubMed  Google Scholar 

  23. van Veghel D, Cleynhens J, Pearce LV et al (2013) Synthesis and biological evaluation of [C]SB366791: a new PET-radioligand for in vivo imaging of the TRPV1 receptor. Nucl Med Biol 40:141–147

    Article  PubMed  Google Scholar 

  24. Graham K, Muller A, Lehmann L et al (2014) [18F]Fluoropyruvate: radiosynthesis and initial biological evaluation. J Labelled Compd Radiopharm 57:164–171

    Article  CAS  Google Scholar 

  25. Horti AG, Ravert HT, Gao Y et al (2013) Synthesis and evaluation of new radioligands [11C]A-833834 and [(11)C]A-752274 for positron-emission tomography of alpha7-nicotinic acetylcholine receptors. Nucl Med Biol 40:395–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lacivita E, Niso M, Hansen HD et al (2014) Design, synthesis, radiolabeling and in vivo evaluation of potential positron emission tomography (PET) radioligands for brain imaging of the 5-HT7 receptor. Bioorg Med Chem 22:1736–1750

    Article  CAS  PubMed  Google Scholar 

  27. Parent EE, Dence CS, Sharp TL et al (2006) Synthesis and biological evaluation of a fluorine-18-labeled nonsteroidal androgen receptor antagonist, N-(3-[18F]fluoro-4-nitronaphthyl)-cis-5-norbornene-endo-2,3-dicarboxylic imide. Nucl Med Biol 33:615–624

    Article  CAS  PubMed  Google Scholar 

  28. Lucatelli C, Honer M, Salazar J-F et al (2009) Synthesis, radiolabeling, in vitro and in vivo evaluation of [18F]-FPECMO as a positron emission tomography radioligand for imaging the metabotropic glutamate receptor subtype 5. Nucl Med Biol 36:613–622

    Article  CAS  PubMed  Google Scholar 

  29. Baumann CA, Mu L, Wertli N et al (2010) Syntheses and pharmacological characterization of novel thiazole derivatives as potential mGluR5 PET ligands. Bioorg Med Chem 18:6044–6054

    Article  CAS  PubMed  Google Scholar 

  30. Parent EE, Jenks C, Sharp T et al (2006) Synthesis and biological evaluation of a nonsteroidal bromine-76-labeled androgen receptor ligand 3-[76Br]bromo-hydroxyflutamide. Nucl Med Biol 33:705–713

    Article  CAS  PubMed  Google Scholar 

  31. Courtyn J, Cornelissen B, Oltenfreiter R et al (2004) Synthesis and assessment of [11C]acetylhomotaurine as an imaging agent for the study of the pharmacodynamic properties of acamprosate by positron emission tomography. Nucl Med Biol 31:649–654

    Article  CAS  PubMed  Google Scholar 

  32. Vasdev N, Garcia A, Stableford WT et al (2005) Synthesis and ex vivo evaluation of carbon-11 labelled N-(4-methoxybenzyl)-N’-(5-nitro-1,3-thiazol-2-yl)urea ([11C]AR-A014418): a radiolabelled glycogen synthase kinase-3beta specific inhibitor for PET studies. Bioorg Med Chem Lett 15:5270–5273

    Article  CAS  PubMed  Google Scholar 

  33. Labas R, Gilbert G, Nicole O et al (2011) Synthesis, evaluation and metabolic studies of radiotracers containing a 4-(4-[18F]-fluorobenzyl)piperidin-1-yl moiety for the PET imaging of NR2B NMDA receptors. Eur J Med Chem 46:2295–2309

    Article  CAS  PubMed  Google Scholar 

  34. Yim C-B, Mikkola K, Fagerholm V et al (2013) Synthesis and preclinical characterization of [64Cu]NODAGA-MAL-exendin-4 with a N-maleoyl-L-lysyl-glycine linkage. Nucl Med Biol 40:1006–1012

    Article  CAS  PubMed  Google Scholar 

  35. Celen S, Deroose C, de Groot T et al (2008) Synthesis and evaluation of 18F- and 11C-labeled phenyl-galactopyranosides as potential probes for in vivo visualization of LacZ gene expression using positron emission tomography. Bioconjug Chem 19:441–449

    Article  CAS  PubMed  Google Scholar 

  36. Wang W-F, Ishiwata K, Kiyosawa M et al (2004) Investigation of the use of positron emission tomography for neuroreceptor imaging in rabbit eyes. Ophthalmic Res 36:255–263

    Article  PubMed  Google Scholar 

  37. Gao M, Mock BH, Hutchins GD, Zheng Q-H (2005) Synthesis and initial PET imaging of new potential NK1 receptor radioligands 1-[2-(3,5-bis-trifluoromethyl-benzyloxy)-1-phenyl-ethyl]-4-[11C]methyl-piperazine and {4-[2-(3,5-bis-trifluoromethyl-benzyloxy)-1-phenyl-ethyl]-piperazine-1-yl}-acetic acid [11C]methyl ester. Nucl Med Biol 32:543–552

    Article  CAS  PubMed  Google Scholar 

  38. Gao M, Mock BH, Hutchins GD, Zheng Q-H (2005) Synthesis and initial PET imaging of new potential dopamine D3 receptor radioligands (E)-4,3,2-[11C]methoxy-N-4-(4-(2-methoxyphenyl)piperazin-1-yl)butyl-cinnamoylamides. Bioorg Med Chem 13:6233–6243

    Article  CAS  PubMed  Google Scholar 

  39. Airaksinen AJ, Jablonowski JA, van der Mey M et al (2006) Radiosynthesis and biodistribution of a histamine H3 receptor antagonist 4-[3-(4-piperidin-1-yl-but-1-ynyl)-[11C]benzyl]-morpholine: evaluation of a potential PET ligand. Nucl Med Biol 33:801–810

    Article  CAS  PubMed  Google Scholar 

  40. Moharram S, Zhou A, Kumar P, Knaus EE, Wiebe LI (2005) Radiosynthesis, in vitro cellular uptake and in vivo biodistribution of 3′-O-(3-benzenesulfonylfuroxan-4-yl)-5-[125I]iodo-2′-deoxyuridine, a nucleoside-based nitric oxide donor. Nucl Med Biol 32:641–645

    Article  CAS  PubMed  Google Scholar 

  41. Jakobsen S, Kodahl GM, Olsen AK, Cumming P (2006) Synthesis, radiolabeling and in vivo evaluation of [11C]RAL-01, a potential phosphodiesterase 5 radioligand. Nucl Med Biol 33:593–597

    Article  CAS  PubMed  Google Scholar 

  42. Wyffels L, Muccioli GG, Kapanda CN et al (2010) PET imaging of fatty acid amide hydrolase in the brain: synthesis and biological evaluation of an 11C-labelled URB597 analogue. Nucl Med Biol 37:665–675

    Article  CAS  PubMed  Google Scholar 

  43. Ravert HT, Dorff P, Foss CA et al (2013) Radiochemical synthesis and in vivo evaluation of [18F]AZ11637326: an agonist probe for the alpha7 nicotinic acetylcholine receptor. Nucl Med Biol 40:731–739

    Article  CAS  PubMed  Google Scholar 

  44. Wang HL, Wang SS, Song WH et al (2015) Expression of prostate-specific membrane antigen in lung cancer cells and tumor neovasculature endothelial cells and its clinical significance. PLoS One 10, e0125924

    Article  PubMed  PubMed Central  Google Scholar 

  45. Granda ML, Carlin SM, Moseley CK et al (2013) Synthesis and evaluation of methylated arylazepine compounds for PET imaging of 5-HT(2c) receptors. ACS Chem Neurosci 4:261–265

    Article  CAS  PubMed  Google Scholar 

  46. Lodge NJ, Li Y-W, Chin FT et al (2014) Synthesis and evaluation of candidate PET radioligands for corticotropin-releasing factor type-1 receptors. Nucl Med Biol 41:524–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Huang Y, Narendran R, Bischoff F et al (2012) Synthesis and characterization of two PET radioligands for the metabotropic glutamate 1 (mGlu1) receptor.[Erratum appears in Synapse. 2013 Feb;67(2):109]. Synapse 66:1002–1014

    Article  CAS  PubMed  Google Scholar 

  48. Pollard H, Moreau J, Arrang JM, Schwartz JC (1993) A detailed autoradiographic mapping of histamine H3 receptors in rat brain areas. Neuroscience 52:169–189

    Article  CAS  PubMed  Google Scholar 

  49. Anlauf M, Eissele R, Schafer MK et al (2003) Expression of the two isoforms of the vesicular monoamine transporter (VMAT1 and VMAT2) in the endocrine pancreas and pancreatic endocrine tumors. J Histochem Cytochem 51:1027–1040

    Article  CAS  PubMed  Google Scholar 

  50. Harris PE, Farwell MD, Ichise M (2013) PET quantification of pancreatic VMAT 2 binding using (+) and (−) enantiomers of [18F]FP-DTBZ in baboons. Nucl Med Biol 40:60–64

    Article  CAS  PubMed  Google Scholar 

  51. Normandin MD, Petersen KF, Ding Y-S et al (2012) In vivo imaging of endogenous pancreatic beta-cell mass in healthy and type 1 diabetic subjects using 18F-fluoropropyl-dihydrotetrabenazine and PET. J Nucl Med 53:908–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kung MP, Hou C, Lieberman BP et al (2008) In vivo imaging of beta-cell mass in rats using 18F-FP-(+)-DTBZ: a potential PET ligand for studying diabetes mellitus. J Nucl Med 49:1171–1176

    Article  CAS  PubMed  Google Scholar 

  53. Kung HF, Lieberman BP, Zhuang ZP et al (2008) In vivo imaging of vesicular monoamine transporter 2 in pancreas using an 18F epoxide derivative of tetrabenazine. Nucl Med Biol 35:825–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Freeby M, Goland R, Ichise M et al (2008) VMAT2 quantitation by PET as a biomarker for beta-cell mass in health and disease. Diabetes Obes Metab 10(Suppl 4):98–108

    Article  PubMed  Google Scholar 

  55. Souza F, Simpson N, Raffo A et al (2006) Longitudinal noninvasive PET-based beta cell mass estimates in a spontaneous diabetes rat model. J Clin Invest 116:1506–1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Simpson NR, Souza F, Witkowski P et al (2006) Visualizing pancreatic beta-cell mass with [11C]DTBZ. Nucl Med Biol 33:855–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Singhal T, Ding YS, Weinzimmer D et al (2011) Pancreatic beta cell mass PET imaging and quantification with [11C]DTBZ and [18F]FP-(+)-DTBZ in rodent models of diabetes. Mol Imaging Biol 13:973–984

    Article  PubMed  Google Scholar 

  58. Goland R, Freeby M, Parsey R et al (2009) 11C-dihydrotetrabenazine PET of the pancreas in subjects with long-standing type 1 diabetes and in healthy controls.[Erratum appears in J Nucl Med. 2009 Oct;50(10):1578]. J Nucl Med 50:382–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Blomberg BA, Eriksson O, Saboury B, Alavi A (2013) beta-Cell mass imaging with DTBZ positron emission tomography: is it possible? Mol Imaging Biol 15:1–2

    Article  PubMed  Google Scholar 

  60. Blomberg BA, Codreanu I, Cheng G et al (2013) Beta-cell imaging: call for evidence-based and scientific approach. Mol Imaging Biol 15:123–130

    Article  PubMed  Google Scholar 

  61. Fagerholm V, Mikkola KK, Ishizu T et al (2010) Assessment of islet specificity of dihydrotetrabenazine radiotracer binding in rat pancreas and human pancreas. J Nucl Med 51:1439–1446

    Article  CAS  PubMed  Google Scholar 

  62. Eriksson O, Jahan M, Johnstrom P et al (2010) In vivo and in vitro characterization of [18F]-FE-(+)-DTBZ as a tracer for beta-cell mass. Nucl Med Biol 37:357–363

    Article  CAS  PubMed  Google Scholar 

  63. Veluthakal R, Harris P (2010) In vivo beta-cell imaging with VMAT 2 ligands--current state-of-the-art and future perspective. Curr Pharm Des 16:1568–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Saisho Y, Harris PE, Butler AE et al (2008) Relationship between pancreatic vesicular monoamine transporter 2 (VMAT2) and insulin expression in human pancreas. J Mol Histol 39:543–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Morel O, Mandry D, Micard E et al (2015) Evidence of cyclic changes in the metabolism of abdominal aortic aneurysms during growth phases: 18F-FDG PET sequential observational study. J Nucl Med 56:1030–1035

    Article  CAS  PubMed  Google Scholar 

  66. Huet P, Burg S, Le Guludec D, Hyafil F, Buvat I (2015) Variability and uncertainty of 18F-FDG PET imaging protocols for assessing inflammation in atherosclerosis: suggestions for improvement. J Nucl Med 56:552–559

    Article  CAS  PubMed  Google Scholar 

  67. Burg S, Dupas A, Stute S et al (2013) Partial volume effect estimation and correction in the aortic vascular wall in PET imaging. Phys Med Biol 58:7527–7542

    Article  CAS  PubMed  Google Scholar 

  68. Hoetjes NJ, van Velden FHP, Hoekstra OS et al (2010) Partial volume correction strategies for quantitative FDG PET in oncology. Eur J Nucl Med Mol Imaging 37:1679–1687

    Article  PubMed  PubMed Central  Google Scholar 

  69. Adams HJ, Kwee TC (2016) A negative 18F-FDG-PET scan can never exclude residual disease. Nucl Med Commun 37:102–103

    PubMed  Google Scholar 

  70. Peterson LM, Kurland BF, Link JM et al (2011) Factors influencing the uptake of 18F-fluoroestradiol in patients with estrogen receptor positive breast cancer. Nucl Med Biol 38:969–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Linden HM, Kurland BF, Peterson LM et al (2011) Fluoroestradiol positron emission tomography reveals differences in pharmacodynamics of aromatase inhibitors, tamoxifen, and fulvestrant in patients with metastatic breast cancer. Clin Cancer Res 17:4799–4805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Peterson LM, Kurland BF, Schubert EK et al (2014) A phase 2 study of 16alpha-[18F]-fluoro-17-beta-estradiol positron emission tomography (FES-PET) as a marker of hormone sensitivity in metastatic breast cancer (MBC). Mol Imaging Biol 16:431–440

    Article  PubMed  Google Scholar 

  73. Yoo J, Dence CS, Sharp TL et al (2005) Synthesis of an estrogen receptor beta-selective radioligand: 5-[18F]fluoro-(2R,3S)-2,3-bis(4-hydroxyphenyl)pentanenitrile and comparison of in vivo distribution with 16alpha-[18F]fluoro-17beta-estradiol. J Med Chem 48:6366–6378

    Article  CAS  PubMed  Google Scholar 

  74. Lee JH, Peters O, Lehmann L et al (2012) Synthesis and biological evaluation of two agents for imaging estrogen receptor beta by positron emission tomography: challenges in PET imaging of a low abundance target. Nucl Med Biol 39:1105–1116

    Article  CAS  PubMed  Google Scholar 

  75. Arstad E, Gitto R, Chimirri A et al (2006) Closing in on the AMPA receptor: synthesis and evaluation of 2-acetyl-1-(4′-chlorophenyl)-6-methoxy-7-[11C]methoxy-1,2,3,4-tetrahydroisoquinoline as a potential PET tracer. Bioorg Med Chem 14:4712–4717

    Article  CAS  PubMed  Google Scholar 

  76. Kumar JSD, Majo VJ, Sullivan GM et al (2006) Synthesis and in vivo evaluation of [11C]SN003 as a PET ligand for CRF1 receptors. Bioorg Med Chem 14:4029–4034

    Article  CAS  PubMed  Google Scholar 

  77. Sullivan GM, Parsey RV, Kumar JSD et al (2007) PET Imaging of CRF1 with [11C]R121920 and [11C]DMP696: is the target of sufficient density? Nucl Med Biol 34:353–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Goke B (2010) What are the potential benefits of clinical beta-cell imaging in diabetes mellitus? Curr Pharm Des 16:1547–1549

    Article  PubMed  Google Scholar 

  79. Ichise M, Harris PE (2010) Imaging of beta-cell mass and function. J Nucl Med 51:1001–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bosco D, Armanet M, Morel P et al (2010) Unique arrangement of alpha- and beta-cells in human islets of Langerhans. Diabetes 59:1202–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sweet IR, Cook DL, Lernmark A, Greenbaum CJ, Krohn KA (2004) Non-invasive imaging of beta cell mass: a quantitative analysis. Diabetes Technol Ther 6:652–659

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abass Alavi.

Ethics declarations

Conflict of Interest

The authors have no conflicts of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, G., Werner, T.J., Newberg, A. et al. Failed PET Application Attempts in the Past, Can We Avoid Them in the Future?. Mol Imaging Biol 18, 797–802 (2016). https://doi.org/10.1007/s11307-016-1017-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-016-1017-y

Key words

Navigation