Skip to main content
Log in

Deformation of Rough Surfaces in Point EHL Contacts

  • Methods
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The film thickness profile obtained by the optical interferometry technique merely represents a separation between contact surfaces and does not give the surface shape of contact surfaces. It has been pointed out that the actual shape of the surface roughness in rolling and/or sliding EHL contacts must be evaluated by separately obtaining the surface shape of contact bodies. The degree of the amplitude reduction in actual roughness depends on the mechanical properties of both contacting surfaces. That is, the deformation of roughness and the pressure at which roughness locates are controlled by the interrelationship between the rough surface and the mating surface caused by rolling and/or sliding motion. The method of finding surface profiles of both bodies separately and also the pressure distribution from the interferogram obtained by the optical interferometry technique is proposed in “Appendix”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

a :

Radius of Hertzian contact circle, (m)

A a,b :

Height of ridge or depth of groove on surfaces a and b, (m)

B a,b :

Base half-width of ridge or groove on surfaces a and b, (m)

E a, E b :

Elastic moduli of solids, (Pa)

Eʹ:

Equivalent elastic modulus, (Pa)  =  2{(1 − νa2)/Εa + (1 − νb2)/Εb }−1

G :

Material parameter, (–) G = α E

h :

Film thickness s, (m)

h a, h b :

Surface shapes of bodies a and b, (m)

h 00 :

Rigid film thickness s, (m)

h ini :

Initial central impact gap, (m)

H :

Dimensionless film thickness, (–) H = h/R

ISA, ISB :

Original shapes of bodies a and b, (m)

L a,b :

Wavelength of ridge or groove on surfaces a and b, (m)

m :

Mass of moving body, (kg)

N :

Number of time step, (–)

p :

Film pressure, (Pa)

p H :

Maximum Hertzian pressure, (Pa)

P :

Dimensionless film pressure, (–) P = p/pH

R :

Reduced radius of contact bodies, [m] R = \({R_{\text{a}}}{R_{\text{b}}}/({R_{\text{a}}}+{R_{\text{b}}})\)

R a, R b :

Radii of contact bodies, (m)

t :

Time, (s)

t 0 :

Time required to wmax, (s)

T :

Temperature, (K)

T 0 :

Ambient temperature, (K)

u, v :

Flow velocities in x and y directions, (m/s)

u a, u b :

Surface velocities of solids in x-direction, (m/s)

u e :

Entrainment velocity, (m/s) ue = (ua + ub)/2

U :

Velocity parameter, (–) U = ue/(ER)

w A :

Applied load, (N)

w max :

Maximum load, (N)

W :

Load parameter, (–) W = wA/(ER2)

x, y :

Coordinates, (m)

x in, x out :

Domain boundaries in x-direction, (m)

X :

Dimensionless coordinate, (–) X = x/a

Y :

Dimensionless coordinate, (–) Y = y/a

y in, y out :

Domain boundaries in y-direction, (m)

α :

Viscosity-pressure coefficient, (Pa−1)

β :

Viscosity-temperature coefficient, (K−1)

δ a, δ b :

Roughness on surfaces, (m)

Δ :

Total elastic deformation, (m)

ν a, ν b :

Poisson’s ratios of solids, (–)

η :

Viscosity of lubricant, (Pa s)

η 0 :

Ambient viscosity of lubricant, (Pa s)

ρ :

Density of lubricant, (kg/m3)

ρ 0 :

Ambient density of lubricant, (kg/m3)

τ x, τy :

Shear stresses along x- and y-directions, (Pa)

τ 0 :

Eyring stress, (Pa)

References

  1. Foord, C.A., Wedeven, L.D., Westlake, F.J., Cameron, A.: Optical elastohydrodynamics. Proc. Inst. Mech. Eng., Part J 184, 487–505 (1969/70)

    Article  Google Scholar 

  2. Cann, P.M., Hutchinson, J., Spikes, H.A.: The development of a spacer layer imaging method (SLIM) for mapping elastohydrodynamic contacts. STLE Tribol. Trans. 39, 915–921 (1996)

    Article  CAS  Google Scholar 

  3. Ai, X., Cheng, H.S.: The influence of moving dent on point EHL contacts. STLE Tribol. Trans. 37, 323–335 (1994)

    Article  Google Scholar 

  4. Venner, C.H., Lubrecht, A.A.: Numerical simulation of a transverse ridge in a circular EHL contact under rolling/sliding. ASME J. Tribol. 116, 751–761 (1994)

    Article  Google Scholar 

  5. Felix-Quinonez, A., Ehret, P., Summers, J.L.: Numerical analysis of experimental observations of a single transverse ridge passing through an elastohydrodynamic lubrication point contact under rolling/sliding conditions. Proc. Inst. Mech. Eng., Part J 218, 109–123 (2004)

    Google Scholar 

  6. Mourier, I., Mazuyer, D., Ninove, F.-P., Lubrecht, A.A.: Lubrication mechanisms with laser-surface-textured surfaces in elastohydrodynamic regime. Proc. Inst. Mech. Eng., Part J 224, 697–711 (2010)

    Article  Google Scholar 

  7. Spikes, H.A.: Sixty years of EHL. Lubr. Sci. 18, 265–391 (2006)

    Article  CAS  Google Scholar 

  8. Lugt, P.M., Morales-Espejel, G.E.: A review of elasto-hydrodynamic lubrication theory. STLE Tribol. Trans. 54, 470–496 (2011)

    Article  Google Scholar 

  9. Glovnea, R.P., Choo, J.W., Olver, A.V., Spikes, H.A.: Compression of a single transverse ridge in a circular elastohydrodynamic contact. ASME J. Tribol. 125, 275–282 (2003)

    Article  Google Scholar 

  10. Sperka, P., Krupka, I., Hartl, M.: Prediction of real rough surface deformation in pure rolling EHL contact: comparison with experiment. STLE Tribol. Trans. 55, 698–704 (2012)

    Article  CAS  Google Scholar 

  11. Sperka, P., Krupka, I., Hartl, M.: Experimental study of roughness effects in a rolling-sliding EHL contact. Part I: roughness deformation. STLE Tribol. Trans. 59, 267–276 (2016)

    Article  CAS  Google Scholar 

  12. Sperka, P., Krupka, I., Hartl, M.: Prediction of shallow indentation effects in a rolling-sliding EHL contact based on amplitude attenuation theory. Tribol Online 12, 1–7 (2017)

    Article  Google Scholar 

  13. Greenwood, J.,A.,, Morales-Espejel, G.E.: The behavior of transverse roughness in EHL contact. Proc. Inst. Mech. Eng., Part J 208, 121–132 (1994)

    Article  Google Scholar 

  14. Venner, C.H., Morales-Espejel, G.E.: Amplitude reduction of small-amplitude waviness in transient elastohydrodynamically lubricated line contacts. ASME J. Tribol. 120, 705–709 (1999)

    Google Scholar 

  15. Hooke, C.J., Venner, C.H.: Surface roughness attenuation in line and point contacts. Proc. Inst. Mech. Eng. Part J 214, 439–444 (2000)

    Google Scholar 

  16. Chapkov, A.D., Venne, C.H., Lubrecht, A.A.: Roughness amplitude reduction under non-Newtonian EHD lubrication conditions. ASME J. Tribol. 128, 753–760 (2006)

    Article  Google Scholar 

  17. Hooke, C.J.: Roughness in rolling–sliding elastohydrodynamic lubricated contacts. Proc. Inst. Mech. Eng. Part J 220, 259–271 (2006)

    Article  Google Scholar 

  18. Hooke, C.J., Li, K.Y., Morales-Espejel, G.: Rapid calculation of the pressures and clearances in rough, rolling-sliding elastohydrodaynamically lubricated contacts, Part 2: General, non-sinusoidal roughness. Proc. Inst. Mech. Eng. Part J 221, 551–564 (2007)

    Google Scholar 

  19. Hooke, C.J.: Engineering analysis of rough elastohydrodaynamically lubricated contacts. Proc. Inst. Mech. Eng. Part J 223, 517–528 (2009)

    Article  Google Scholar 

  20. Hooke, C.J., Li, K.Y.: Roughness in elastohydrodynamic contacts. Proc. Inst. Mech. Eng. Part C 224, 599–609 (2010)

    Google Scholar 

  21. Choo, J.W., Olver, A.V., Spikes, H.A., Dumont, M.-L., Ioannides, E.: Interaction of asperities on opposing surfaces in thin film, mixed elastohydrodynamics lubrication. ASME J. Tribol. 130, 021505 (2008)

    Article  Google Scholar 

  22. Cui, J., Yang, P.R.: Transient thermo-EHL theory of point contact—the process of a bump on the fast surface passing a bump on the slower surface. In: Dalmaz, G. (ed.) Proceeding of 30th Leeds-Lyon Symposium on Tribology, Elsevier, 253–261 (2004)

  23. Cui, J., Yang, P., Kaneta, M., Krupka, I.: Numerical study on the interaction of transversely oriented ridges in thermal elastohydrodynamic lubrication point contacts using the Eyring shear-thinning model. Proc. Inst. Mech. Eng. Part J 231, 93–106 (2017)

    Article  Google Scholar 

  24. Dowson, D., Higginson, G.R.: Elastohydrodynamic Lubrication: The Fundamentals of Roller and Gear Lubrication. Pergamon, Oxford (1966)

    Google Scholar 

  25. Rölands, C.J.A., Vulgter, J.C., Waltermann, H.I.: The viscosity temperature pressure relationship of lubrication oils and its correlation with chemical constitution. ASME J. Basic Eng. 85, 601–607 (1963)

    Article  Google Scholar 

  26. Venner, C.H., Lubrecht, A.A.: Multilevel Methods in Lubrication, Elsevier, Amsterdam (2000)

    Google Scholar 

  27. Sakamoto, M., Nishikawa, H., Kaneta, M.: Behaviour of point contact EHL films under pulsating loads. In: Dalmaz, G. (ed.) Proceeding of 30th Leeds-Lyon Symposium on Tribology, Elsevier, 391–399: (2004)

  28. Guo, F., Kaneta, M., Wang, J., Nishikawa, H., Yang, P.: Occurrence of a non-central dimple in squeezing EHL contacts. ASME J. Tribol. 128, 632–640 (2006)

    Article  Google Scholar 

  29. Kaneta, M., Nishikawa, H., Mizui, M., Guo, F.: Impact elastohydrodynamics in point contact. Proc. Inst. Mech. Eng. Part J 225, 1–12 (2011)

    Article  Google Scholar 

  30. Kaneta, M., Guo, F., Wang, J.: Impact micro-elastohydrodynamics in point contacts. ASME J. Tribol. 133, 031503 (2011)

    Article  Google Scholar 

  31. Kaneta, M., Guo, F., Wang, J., Krupka, I., Hartl, M.: Formation of micro-grooves under impact loading in elliptical contacts with surface ridges. Tribol. Int. 65, 336–345 (2013)

    Article  Google Scholar 

  32. Kaneta, M., Guo, F., Wang, J., Krupka, I., Hartl, M.: Microgroove formation in surface ridges in impact elliptical EHL contacts. Lubr. Sci. 26, 283–299 (2014)

    Article  Google Scholar 

  33. Cui, J., Yang, P., Jin, Z.M., Dowson, D.: Transient elastohydrodynamic analysis of elliptical contacts, part 3: non-Newtonian lubricant solution under isothermal and thermal conditions. Proc. Inst. Mech. Eng. Part J 221, 63–73 (2007)

    Article  Google Scholar 

  34. Yang, P., Wen, S.: A generalized Reynolds equation for non-Newtonian thermal elastohydrodynamic lubrication. ASME J. Tribol. 112, 631–636 (1990)

    Article  Google Scholar 

  35. Kaneta, M., Sakai, T., Nishikawa, H.: Optical interferometric observations of the effects of a bump on point contact EHL. ASME J. Tribol. 114, 779–784 (1992)

    Article  Google Scholar 

  36. Gusngteng, G., Cann, P.M., Olver, A.V., Spikes, H.A.: An experimental study of film thickness between rough surfaces in EHD contacts. Tribol. Int. 33, 183–189 (2000)

    Article  Google Scholar 

  37. Felix-Quinonez, A., Ehret, P., Summers, J.L.: New experimental results of a single transverse ridge passing through an EHL conjunction. ASME J. Tribol. 125, 252–259 (2003)

    Article  Google Scholar 

  38. Cusano, C., Wedeven, L.D.: Elastohydrodynamic film thickness measurements of artificially produced nonsmooth surfaces. ASLE Trans. 24, 1–14 (1978)

    Article  Google Scholar 

  39. Kaneta, M., Sakai, T., Nishikawa, H.: Effects of surface roughness on point contact EHL. STLE Tribol. Trans. 36, 605–612 (1993)

    Article  Google Scholar 

  40. Choo, J.W., Olver, A.V., Spikes, H.A.: The influence of transverse roughness in thin film, mixed elastohydrodynamics lubrication. Tribol. Int. 40, 220–232 (2007)

    Article  CAS  Google Scholar 

  41. Gohar, R.: Elastohydrodynamics. Imperial College Press, London (2001)

    Book  Google Scholar 

  42. Kaneta, M., Nishikawa, H., Kanada, T., Matsuda, K.: Abnormal phenomena appearing in EHL contacts. ASME J. Tribol. 118, 886–892 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their thanks to the financial support from Czech Science Foundation 15-24091S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motohiro Kaneta.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

It has been revealed that the effect of the surface roughness on the EHL film thickness and pressure distributions can be understood by knowing the surface shape of the contact bodies separately. The optical interferometry technique seems to be the best experimental method to measure the film thickness distribution. Therefore, it is extremely important to develop a method to obtain the surface shape of contact bodies and pressure distribution from the optical interferometric observations. The method is explained below.

Divide an area wider than the Hertzian contact area into small rectangular areas of arbitrary sizes in consideration of the change in film thickness. The deflection \(\Delta (x,y)\) of a general point \((x,\,y)\) on the surface due to a uniform pressure \(p(x^{\prime},y^{\prime})\) acting on a rectangular area 2a × 2b at \((x^{\prime},\,y^{\prime})\) is given as follows [41]:

$$\begin{aligned} \Delta (x,y) & =p(x^{\prime},y^{\prime})\frac{2}{{\pi E^{\prime}}}\int_{{ - a}}^{a} {\int_{{ - b}}^{b} {\frac{{{\text{d}}{x_1}{\text{d}}{y_1}}}{{\sqrt {{{(x - x^{\prime} - {x_1})}^2}+{{(y - y^{\prime} - {y_1})}^2}} }}} } \\ & =\frac{2}{{\pi E^{\prime}}}\left[ \begin{gathered} (x - x^{\prime}+a)\ln \left\{ {\frac{{(y - y^{\prime}+b)+\sqrt {{{(y - y^{\prime}+b)}^2}+{{(x - x^{\prime}+a)}^2}} }}{{(y - y^{\prime} - b)+\sqrt {{{(y - y^{\prime} - b)}^2}+{{(x - x^{\prime}+a)}^2}} }}} \right\} \hfill \\ +(y - y^{\prime}+b)\ln \left\{ {\frac{{(x - x^{\prime}+a)+\sqrt {{{(y - y^{\prime}+b)}^2}+{{(x - x^{\prime}+a)}^2}} }}{{(x - x^{\prime} - a)+\sqrt {{{(y - y^{\prime}+b)}^2}+{{(x - x^{\prime} - a)}^2}} }}} \right\} \hfill \\ +(x - x^{\prime} - a)\ln \left\{ {\frac{{(y - y^{\prime} - b)+\sqrt {{{(y - y^{\prime} - b)}^2}+{{(x - x^{\prime} - a)}^2}} }}{{(y - y^{\prime}+b)+\sqrt {{{(y - y^{\prime}+b)}^2}+{{(x - x^{\prime} - a)}^2}} }}} \right\} \hfill \\ +(y - y^{\prime} - b)\ln \left\{ {\frac{{(x - x^{\prime} - a)+\sqrt {{{(y - y^{\prime} - b)}^2}+{{(x - x^{\prime} - a)}^2}} }}{{(x - x^{\prime}+a)+\sqrt {{{(y - y^{\prime} - b)}^2}+{{(x - x^{\prime}+a)}^2}} }}} \right\} \hfill \\ \end{gathered} \right]p(x^{\prime},y^{\prime}) \\ & ={I_{xy,\,x^{\prime}\,y^{\prime}}}p(x^{\prime},y^{\prime}) \\ \end{aligned} $$
(17)

where \((x^{\prime},y^{\prime})\) is the coordinates of the center of the rectangular area 2a × 2b.

The total deflection \(\Delta ({x_i},{y_j})\), i.e., \({\Delta _{i,j}}\), at an arbitrary point \(({x_i},{y_j})\) due to the pressure distribution \(p({x_k},{y_l})\), i.e., \({p_{k,l}}\), defined by discrete elements, can be found as follows [41]:

$${\Delta _{i,j}}=\sum\limits_{{l=1}}^{N} {\sum\limits_{{k=1}}^{M} {{I_{ij,kl}}{p_{kl}}} } $$
(18)

where l = 1, N, k = 1, M, and M × N is the total number of grid points of the rectangular elements.

Equation (1) leads

$$\Delta ({x_i},{y_j})=h({x_i},{y_j}) - {h_{00}} - (ISB({x_i},{y_j}) - ISA({x_i},{y_j}))$$
(19)

The deflection \(\Delta ({x_0},{y_0})\) at a reference point \(({x_0},{y_0})\) can be obtained by

$$\Delta ({x_0},{y_0})=h({x_0},{y_0}) - {h_{00}} - (ISB({x_0},{y_0}) - ISA({x_0},{y_0}))$$
(20)

\({h_{00}}\) can be eliminated by subtracting \(\Delta ({x_0},{y_0})\) from \(\Delta (x,y)\). If the center of the contact is adopted as the reference point, \(\Delta ({x_0},{y_0})=\Delta (0,0)\). So the difference in deflection between the reference point (0, 0) and the target point (xi, yj), i.e., \(\Delta ({x_i},{y_j}) - \Delta (0,0)\), becomes

$$\sum\limits_{{l=1}}^{N} {\sum\limits_{{k=1}}^{M} {\left( {{I_{ij,kl}} - {I_{00,kl}}} \right){p_{kl}}} } ={h_{i,j}} - (IS{B_{i,j}} - IS{A_{i,j}})+(IS{B_{0,0}} - IS{A_{0,0}})$$
(21)

The applied load \({w_A}\) should be related to the following equation

$${w_A}=4\sum\limits_{{l=1}}^{N} {\sum\limits_{{k=1}}^{M} {{a_k}{b_l}{p_{kl}}} } $$
(22)

The total deflection \(\Delta ({x_i},{y_j})\) can be obtained by inserting the pressure distribution obtained by Eqs. (21) and (22) into Eq. (18). Then, one can find h00 in Eq. (19), and as a result, surface profiles can be obtained from Eqs. (5a) and (5b) or (6a) and (6b).

The same method has already been used by the authors [42] for a contact between smooth surfaces without describing detailed analytical method.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krupka, I., Hartl, M., Matsuda, K. et al. Deformation of Rough Surfaces in Point EHL Contacts. Tribol Lett 67, 33 (2019). https://doi.org/10.1007/s11249-019-1145-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-019-1145-z

Keywords

Navigation