Skip to main content

Advertisement

Log in

An overview of inborn errors of metabolism manifesting with primary adrenal insufficiency

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Primary adrenal insufficiency (PAI) results from an inability to produce adequate amounts of steroid hormones from the adrenal cortex. The most common causes of PAI are autoimmune adrenalitis (Addison's disease), infectious diseases, adrenalectomy, neoplasia, medications, and various rare genetic syndromes and inborn errors of metabolism that typically present in childhood although late-onset presentations are becoming increasingly recognized. The prevalence of PAI in Western countries is approximately 140 cases per million, with an incidence of 4 per 1,000,000 per year. Several pitfalls in the genetic diagnosis of patients with PAI exist. In this review, we provide an in-depth discussion and overview on the inborn errors of metabolism manifesting with PAI, including genetic diagnosis, genotype-phenotype relationships and counseling of patients and their families with a focus on various enzymatic deficiencies of steroidogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Erichsen MM, Lovas K, Fougner KJ, Svartberg J, Hauge ER, Bollerslev J, et al. Normal overall mortality rate in Addison's disease, but young patients are at risk of premature death. Eur J Endocrinol. 2009;160(2):233–7.

    Article  CAS  PubMed  Google Scholar 

  2. Laureti S, Vecchi L, Santeusanio F, Falorni A. Is the prevalence of Addison's disease underestimated? J Clin Endocrinol Metab. 1999;84(5):1762.

    CAS  PubMed  Google Scholar 

  3. Bornstein SR, Allolio B, Arlt W, Barthel A, Don-Wauchope A, Hammer GD, et al. Diagnosis and treatment of primary adrenal insufficiency: An Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2016;101(2):364–89.

    Article  CAS  PubMed  Google Scholar 

  4. Applegarth DA, Toone JR, Lowry RB. Incidence of inborn errors of metabolism in British Columbia, 1969-1996. Pediatrics. 2000;105(1):e10.

    Article  CAS  PubMed  Google Scholar 

  5. Sanderson S, Green A, Preece MA, Burton H. The incidence of inherited metabolic disorders in the west midlands, UK. Arch Dis Child. 2006;91(11):896–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bleicken B, Hahner S, Ventz M, Quinkler M. Delayed diagnosis of adrenal insufficiency is common: A cross-sectional study in 216 patients. Am J Med Sci. 2010;339(6):525–31.

    Article  PubMed  Google Scholar 

  7. Fluck CE. Mechanisms in Endocrinology: Update on pathogenesis of primary adrenal insufficiency: Beyond steroid enzyme deficiency and autoimmune adrenal destruction. Eur J Endocrinol. 2017;177(3):R99–R111.

    Article  CAS  PubMed  Google Scholar 

  8. Charmandari E, Nicolaides NC, Chrousos GP. Adrenal insufficiency. Lancet. 2014;383(9935):2152–67.

    Article  CAS  PubMed  Google Scholar 

  9. Engelen M, Barbier M, Dijkstra IM, Schur R, de Bie RM, Verhamme C, et al. X-linked adrenoleukodystrophy in women: A cross-sectional cohort study. Brain. 2014;137(Pt 3):693–706.

    Article  PubMed  Google Scholar 

  10. Miller WL. Disorders in the initial steps of steroid hormone synthesis. J Steroid Biochem Mol Biol. 2017;165(Pt A):18–37.

    Article  CAS  PubMed  Google Scholar 

  11. Porter FD, Herman GE. Malformation syndromes caused by disorders of cholesterol synthesis. J Lipid Res. 2011;52(1):6–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bzduch V, Behulova D, Skodova J. Incidence of smith-Lemli-Opitz syndrome in Slovakia. Am J Med Genet. 2000;90(3):260.

    Article  CAS  PubMed  Google Scholar 

  13. Nowaczyk MJ, Zeesman S, Waye JS, Douketis JD. Incidence of smith-Lemli-Opitz syndrome in Canada: Results of three-year population surveillance. J Pediatr. 2004;145(4):530–5.

    Article  PubMed  Google Scholar 

  14. Nowaczyk MJ, Siu VM, Krakowiak PA, Porter FD. Adrenal insufficiency and hypertension in a newborn infant with smith-Lemli-Opitz syndrome. Am J Med Genet. 2001;103(3):223–5.

    Article  CAS  PubMed  Google Scholar 

  15. Herman GE. X-linked dominant disorders of cholesterol biosynthesis in man and mouse. Biochim Biophys Acta. 2000;1529(1–3):357–73.

    Article  CAS  PubMed  Google Scholar 

  16. Anderson RA, Bryson GM, Parks JS. Lysosomal acid lipase mutations that determine phenotype in Wolman and cholesterol ester storage disease. Mol Genet Metab. 1999;68(3):333–45.

    Article  CAS  PubMed  Google Scholar 

  17. Boldrini R, Devito R, Biselli R, Filocamo M, Bosman C. Wolman disease and cholesteryl ester storage disease diagnosed by histological and ultrastructural examination of intestinal and liver biopsy. Pathol Res Pract. 2004;200(3):231–40.

    Article  PubMed  Google Scholar 

  18. Ozmen MN, Aygun N, Kilic I, Kuran L, Yalcin B, Besim A. Wolman's disease: Ultrasonographic and computed tomographic findings. Pediatr Radiol. 1992;22(7):541–2.

    Article  CAS  PubMed  Google Scholar 

  19. Perry R, Kecha O, Paquette J, Huot C, Van Vliet G, Deal C. Primary adrenal insufficiency in children: Twenty years experience at the Sainte-Justine Hospital, Montreal. J Clin Endocrinol Metab. 2005;90(6):3243–50.

    Article  CAS  PubMed  Google Scholar 

  20. Muntoni S, Wiebusch H, Jansen-Rust M, Rust S, Seedorf U, Schulte H, et al. Prevalence of cholesteryl ester storage disease. Arterioscler Thromb Vasc Biol. 2007;27(8):1866–8.

    Article  CAS  PubMed  Google Scholar 

  21. Valles-Ayoub Y, Esfandiarifard S, No D, Sinai P, Khokher Z, Kohan M, et al. Wolman disease (LIPA p.G87V) genotype frequency in people of Iranian-Jewish ancestry. Genet Test Mol Biomarkers. 2011;15(6):395–8.

    Article  CAS  PubMed  Google Scholar 

  22. Vanier MT, Millat G. Niemann-pick disease type C. Clin Genet. 2003;64(4):269–81.

    Article  CAS  PubMed  Google Scholar 

  23. Wassif CA, Cross JL, Iben J, Sanchez-Pulido L, Cougnoux A, Platt FM, et al. High incidence of unrecognized visceral/neurological late-onset Niemann-pick disease, type C1, predicted by analysis of massively parallel sequencing data sets. Genet Med. 2016;18(1):41–8.

    Article  CAS  PubMed  Google Scholar 

  24. Chang TY, Reid PC, Sugii S, Ohgami N, Cruz JC, Chang CC. Niemann-pick type C disease and intracellular cholesterol trafficking. J Biol Chem. 2005;280(22):20917–20.

    Article  CAS  PubMed  Google Scholar 

  25. Greer WL, Riddell DC, Gillan TL, Girouard GS, Sparrow SM, Byers DM, et al. The Nova Scotia (type D) form of Niemann-Pick disease is caused by a G3097→T transversion in NPC1. Am J Hum Genet. 1998;63(1):52–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Geberhiwot T, Moro A, Dardis A, Ramaswami U, Sirrs S, Marfa MP, et al. Consensus clinical management guidelines for Niemann-pick disease type C. Orphanet J Rare Dis. 2018;13(1):50.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Strisciuglio P, Di Maio S, Parenti G, Franzese A, Lubrano P, Mariano A, et al. Evidence of polyglandular involvement in Niemann-pick disease type B. Eur J Pediatr. 1987;146(4):431–3.

    Article  CAS  PubMed  Google Scholar 

  28. Cassiman D, Packman S, Bembi B, Turkia HB, Al-Sayed M, Schiff M, et al. Cause of death in patients with chronic visceral and chronic neurovisceral acid sphingomyelinase deficiency (Niemann-pick disease type B and B variant): Literature review and report of new cases. Mol Genet Metab. 2016;118(3):206–13.

    Article  CAS  PubMed  Google Scholar 

  29. Alizon C, Beucher AB, Gourdier AL, Lavigne C. [Type B Niemann pick disease: Clinical description of three patients in a same family]. Rev Med Interne 2010;31(8):562–565.

  30. Hannah-Shmouni F, Chen W, Merke DP. Genetics of congenital adrenal hyperplasia. Endocrinol Metab Clin N Am. 2017;46(2):435–58.

    Article  Google Scholar 

  31. Therrell BL, Jr., Berenbaum SA, Manter-Kapanke V, Simmank J, Korman K, Prentice L, et al. Results of screening 1.9 million Texas newborns for 21-hydroxylase-deficient congenital adrenal hyperplasia. Pediatrics. 1998;101(4 Pt 1):583–90.

    Article  PubMed  Google Scholar 

  32. Speiser PW, Azziz R, Baskin LS, Ghizzoni L, Hensle TW, Merke DP, Meyer-Bahlburg HF, Miller WL, Montori VM, Oberfield SE, Ritzen M, White PC, Endocrine Society. Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: An Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2010;95(9):4133–60.

  33. Wedell A, Thilen A, Ritzen EM, Stengler B, Luthman H. Mutational spectrum of the steroid 21-hydroxylase gene in Sweden: Implications for genetic diagnosis and association with disease manifestation. J Clin Endocrinol Metab. 1994;78(5):1145–52.

    CAS  PubMed  Google Scholar 

  34. Speiser PW, Dupont J, Zhu D, Serrat J, Buegeleisen M, Tusie-Luna MT, et al. Disease expression and molecular genotype in congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J Clin Invest. 1992;90(2):584–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Finkielstain GP, Chen W, Mehta SP, Fujimura FK, Hanna RM, Van Ryzin C, et al. Comprehensive genetic analysis of 182 unrelated families with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J Clin Endocrinol Metab. 2011;96(1):E161–72.

    Article  CAS  PubMed  Google Scholar 

  36. Krone N, Braun A, Roscher AA, Knorr D, Schwarz HP. Predicting phenotype in steroid 21-hydroxylase deficiency? Comprehensive genotyping in 155 unrelated, well defined patients from southern Germany. J Clin Endocrinol Metab. 2000;85(3):1059–65.

    Article  CAS  PubMed  Google Scholar 

  37. Ordonez-Sanchez ML, Ramirez-Jimenez S, Lopez-Gutierrez AU, Riba L, Gamboa-Cardiel S, Cerrillo-Hinojosa M, et al. Molecular genetic analysis of patients carrying steroid 21-hydroxylase deficiency in the Mexican population: Identification of possible new mutations and high prevalence of apparent germ-line mutations. Hum Genet. 1998;102(2):170–7.

    Article  CAS  PubMed  Google Scholar 

  38. Ezquieta B, Oliver A, Gracia R, Gancedo PG. Analysis of steroid 21-hydroxylase gene mutations in the Spanish population. Hum Genet. 1995;96(2):198–204.

    Article  CAS  PubMed  Google Scholar 

  39. Carrera P, Bordone L, Azzani T, Brunelli V, Garancini MP, Chiumello G, et al. Point mutations in Italian patients with classic, non-classic, and cryptic forms of steroid 21-hydroxylase deficiency. Hum Genet. 1996;98(6):662–5.

    Article  CAS  PubMed  Google Scholar 

  40. Dardis A, Bergada I, Bergada C, Rivarola M, Belgorosky A. Mutations of the steroid 21-hydroxylase gene in an Argentinian population of 36 patients with classical congenital adrenal hyperplasia. J Pediatr Endocrinol Metab: JPEM. 1997;10(1):55–61.

  41. de Carvalho DF, Miranda MC, Gomes LG, Madureira G, Marcondes JA, Billerbeck AE, et al. Molecular CYP21A2 diagnosis in 480 Brazilian patients with congenital adrenal hyperplasia before newborn screening introduction. Eur J Endocrinol. 2016;175(2):107–16.

    Article  PubMed  CAS  Google Scholar 

  42. Barbat B, Bogyo A, Raux-Demay MC, Kuttenn F, Boue J, Simon-Bouy B, et al. Screening of CYP21 gene mutations in 129 French patients affected by steroid 21-hydroxylase deficiency. Hum Mutat. 1995;5(2):126–30.

    Article  CAS  PubMed  Google Scholar 

  43. Wilson RC, Nimkarn S, Dumic M, Obeid J, Azar MR, Najmabadi H, et al. Ethnic-specific distribution of mutations in 716 patients with congenital adrenal hyperplasia owing to 21-hydroxylase deficiency. Mol Genet Metab. 2007;90(4):414–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Speiser PW, Dupont B, Rubinstein P, Piazza A, Kastelan A, New MI. High frequency of nonclassical steroid 21-hydroxylase deficiency. Am J Hum Genet. 1985;37(4):650–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hannah-Shmouni F, Morissette R, Sinaii N, Elman M, Prezant TR, Chen W, et al. Revisiting the prevalence of nonclassic congenital adrenal hyperplasia in US Ashkenazi Jews and Caucasians. Genet Med. 2017;19(11):1276–9.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Nandagopal R, Sinaii N, Avila NA, Van Ryzin C, Chen W, Finkielstain GP, et al. Phenotypic profiling of parents with cryptic nonclassic congenital adrenal hyperplasia: Findings in 145 unrelated families. Eur J Endocrinol. 2011;164(6):977–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nebert DW, Nelson DR, Coon MJ, Estabrook RW, Feyereisen R, Fujii-Kuriyama Y, et al. The P450 superfamily: Update on new sequences, gene mapping, and recommended nomenclature. DNA Cell Biol. 1991;10(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  48. Higashi Y, Yoshioka H, Yamane M, Gotoh O, Fujii-Kuriyama Y. Complete nucleotide sequence of two steroid 21-hydroxylase genes tandemly arranged in human chromosome: A pseudogene and a genuine gene. Proc Natl Acad Sci U S A. 1986;83(9):2841–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Speiser PW, White PC. Congenital adrenal hyperplasia. N Engl J Med. 2003;349(8):776–88.

    Article  CAS  PubMed  Google Scholar 

  50. Concolino P, Mello E, Minucci A, Giardina E, Zuppi C, Toscano V, et al. A new CYP21A1P/CYP21A2 chimeric gene identified in an Italian woman suffering from classical congenital adrenal hyperplasia form. BMC Med Genet. 2009;10:72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Vrzalova Z, Hruba Z, Hrabincova ES, Vrabelova S, Votava F, Kolouskova S, et al. Chimeric CYP21A1P/CYP21A2 genes identified in Czech patients with congenital adrenal hyperplasia. Eur J Med Genet. 2011;54(2):112–7.

    Article  PubMed  Google Scholar 

  52. New MI, Abraham M, Gonzalez B, Dumic M, Razzaghy-Azar M, Chitayat D, et al. Genotype-phenotype correlation in 1,507 families with congenital adrenal hyperplasia owing to 21-hydroxylase deficiency. Proc Natl Acad Sci U S A. 2013;110(7):2611–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jaaskelainen J, Levo A, Voutilainen R, Partanen J. Population-wide evaluation of disease manifestation in relation to molecular genotype in steroid 21-hydroxylase (CYP21) deficiency: Good correlation in a well defined population. J Clin Endocrinol Metab. 1997;82(10):3293–7.

    CAS  PubMed  Google Scholar 

  54. Stikkelbroeck NM, Hoefsloot LH, de Wijs IJ, Otten BJ, Hermus AR, Sistermans EA. CYP21 gene mutation analysis in 198 patients with 21-hydroxylase deficiency in the Netherlands: Six novel mutations and a specific cluster of four mutations. J Clin Endocrinol Metab. 2003;88(8):3852–9.

    Article  CAS  PubMed  Google Scholar 

  55. Lee HH, Chao HT, Ng HT, Choo KB. Direct molecular diagnosis of CYP21 mutations in congenital adrenal hyperplasia. J Med Genet. 1996;33(5):371–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Higashi Y, Tanae A, Inoue H, Hiromasa T, Fujii-Kuriyama Y. Aberrant splicing and missense mutations cause steroid 21-hydroxylase [P-450(C21)] deficiency in humans: Possible gene conversion products. Proc Natl Acad Sci U S A. 1988;85(20):7486–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Amor M, Parker KL, Globerman H, New MI, White PC. Mutation in the CYP21B gene (Ile-172----Asn) causes steroid 21-hydroxylase deficiency. Proc Natl Acad Sci of the United States of America. 1988;85(5):1600–1604.

    Article  CAS  Google Scholar 

  58. Tusie-Luna MT, Traktman P, White PC. Determination of functional effects of mutations in the steroid 21-hydroxylase gene (CYP21) using recombinant vaccinia virus. J Biol Chem. 1990;265(34):20916–22.

    CAS  PubMed  Google Scholar 

  59. Helmberg A, Tusie-Luna MT, Tabarelli M, Kofler R, White PC. R339H and P453S: CYP21 mutations associated with nonclassic steroid 21-hydroxylase deficiency that are not apparent gene conversions. Mol Endocrinol. 1992;6(8):1318–22.

    CAS  PubMed  Google Scholar 

  60. Tusie-Luna MT, Speiser PW, Dumic M, New MI, White PC. A mutation (Pro-30 to Leu) in CYP21 represents a potential nonclassic steroid 21-hydroxylase deficiency allele. Mol Endocrinol. 1991;5(5):685–92.

    Article  CAS  PubMed  Google Scholar 

  61. Tusie-Luna MT, White PC. Gene conversions and unequal crossovers between CYP21 (steroid 21-hydroxylase gene) and CYP21P involve different mechanisms. Proc Natl Acad Sci U S A. 1995;92(23):10796–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Merke DP, Chen W, Morissette R, Xu Z, Van Ryzin C, Sachdev V, et al. Tenascin-X haploinsufficiency associated with Ehlers-Danlos syndrome in patients with congenital adrenal hyperplasia. J Clin Endocrinol Metab. 2013;98(2):E379–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen W, Kim MS, Shanbhag S, Arai A, VanRyzin C, McDonnell NB, et al. The phenotypic spectrum of contiguous deletion of CYP21A2 and tenascin XB: Quadricuspid aortic valve and other midline defects. Am J Med Genet A. 2009;149A(12):2803–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Morissette R, Chen W, Perritt AF, Dreiling JL, Arai AE, Sachdev V, et al. Broadening the Spectrum of Ehlers Danlos syndrome in patients with congenital adrenal hyperplasia. J Clin Endocrinol Metab. 2015;100(8):E1143–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Simard J, Ricketts ML, Gingras S, Soucy P, Feltus FA, Melner MH. Molecular biology of the 3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase gene family. Endocr Rev. 2005;26(4):525–82.

    Article  CAS  PubMed  Google Scholar 

  66. Fluck CE, Tajima T, Pandey AV, Arlt W, Okuhara K, Verge CF, et al. Mutant P450 oxidoreductase causes disordered steroidogenesis with and without Antley-Bixler syndrome. Nat Genet. 2004;36(3):228–30.

    Article  PubMed  CAS  Google Scholar 

  67. Krone N, Reisch N, Idkowiak J, Dhir V, Ivison HE, Hughes BA, et al. Genotype-phenotype analysis in congenital adrenal hyperplasia due to P450 oxidoreductase deficiency. J Clin Endocrinol Metab. 2012;97(2):E257–67.

    Article  CAS  PubMed  Google Scholar 

  68. Lin D, Gitelman SE, Saenger P, Miller WL. Normal genes for the cholesterol side chain cleavage enzyme, P450scc, in congenital lipoid adrenal hyperplasia. J Clin Invest. 1991;88(6):1955–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bose HS, Sugawara T, Strauss JF 3rd, Miller WL. International congenital lipoid adrenal hyperplasia C. The pathophysiology and genetics of congenital lipoid adrenal hyperplasia. N Engl J Med. 1996;335(25):1870–8.

    Article  CAS  PubMed  Google Scholar 

  70. Baker BY, Lin L, Kim CJ, Raza J, Smith CP, Miller WL, et al. Nonclassic congenital lipoid adrenal hyperplasia: A new disorder of the steroidogenic acute regulatory protein with very late presentation and normal male genitalia. J Clin Endocrinol Metab. 2006;91(12):4781–5.

    Article  CAS  PubMed  Google Scholar 

  71. Tajima T, Fujieda K, Kouda N, Nakae J, Miller WL. Heterozygous mutation in the cholesterol side chain cleavage enzyme (p450scc) gene in a patient with 46,XY sex reversal and adrenal insufficiency. J Clin Endocrinol Metab. 2001;86(8):3820–5.

    Article  CAS  PubMed  Google Scholar 

  72. Miller WL. Disorders in the initial steps of steroid hormone synthesis. J Steroid Biochem Mol Biol 2016.

  73. Guran T, Buonocore F, Saka N, Ozbek MN, Aycan Z, Bereket A, et al. Rare causes of primary adrenal insufficiency: Genetic and clinical characterization of a large Nationwide cohort. J Clin Endocrinol Metab. 2016;101(1):284–92.

    Article  CAS  PubMed  Google Scholar 

  74. Mosser J, Douar AM, Sarde CO, Kioschis P, Feil R, Moser H, et al. Putative X-linked adrenoleukodystrophy gene shares unexpected homology with ABC transporters. Nature. 1993;361(6414):726–30.

    Article  CAS  PubMed  Google Scholar 

  75. Engelen M, Kemp S, de Visser M, van Geel BM, Wanders RJ, Aubourg P, et al. X-linked adrenoleukodystrophy (X-ALD): Clinical presentation and guidelines for diagnosis, follow-up and management. Orphanet J Rare Dis. 2012;7:51.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Engelen M, Kemp S. Poll-the BT. X-linked adrenoleukodystrophy: Pathogenesis and treatment. Curr Neurol Neurosci Rep. 2014;14(10):486.

    Article  PubMed  CAS  Google Scholar 

  77. Siemerling ECH. Bronzekrankheit und sclero- sierende Encephalomyelitis (DiVuse Sklerose). Archiv für Psychiatrie. 1923;68:217–44.

    Article  Google Scholar 

  78. Me. B. Melanodermic type leukodystrophy (adrenoleukodystrophy). In: Vinken PJ, et al handbook of clinical neurologyVol 10 New York: American Elsevier, 1970:128–33. 1970.

  79. Bezman L, Moser AB, Raymond GV, Rinaldo P, Watkins PA, Smith KD, et al. Adrenoleukodystrophy: Incidence, new mutation rate, and results of extended family screening. Ann Neurol. 2001;49(4):512–7.

    Article  CAS  PubMed  Google Scholar 

  80. Laureti S, Casucci G, Santeusanio F, Angeletti G, Aubourg P, Brunetti P. X-linked adrenoleukodystrophy is a frequent cause of idiopathic Addison's disease in young adult male patients. J Clin Endocrinol Metab. 1996;81(2):470–4.

    CAS  PubMed  Google Scholar 

  81. Steinberg SJ, Moser AB, Raymond GV. X-Linked Adrenoleukodystrophy. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al., editors. GeneReviews((R)). Seattle (WA)1993.

  82. van Geel BM, Assies J, Wanders RJ, Barth PG. X linked adrenoleukodystrophy: Clinical presentation, diagnosis, and therapy. J Neurol Neurosurg Psychiatry. 1997;63(1):4–14.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Corzo D, Gibson W, Johnson K, Mitchell G, LePage G, Cox GF, et al. Contiguous deletion of the X-linked adrenoleukodystrophy gene (ABCD1) and DXS1357E: A novel neonatal phenotype similar to peroxisomal biogenesis disorders. Am J Hum Genet. 2002;70(6):1520–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Schackmann MJ, Ofman R, van Geel BM, Dijkstra IM, van Engelen K, Wanders RJ, et al. Pathogenicity of novel ABCD1 variants: The need for biochemical testing in the era of advanced genetics. Mol Genet Metab. 2016;118(2):123–7.

    Article  CAS  PubMed  Google Scholar 

  85. Lecumberri B, Giros ML, Coll MJ, Marco A, Casado M, Pallardo LF, et al. Diffuse hair loss in Addison disease: A reason for X-linked adrenoleukodystrophy screening. J Am Acad Dermatol. 2012;66(5):860–1.

    Article  PubMed  Google Scholar 

  86. Kemper AR, Brosco J, Comeau AM, Green NS, Grosse SD, Jones E, et al. Newborn screening for X-linked adrenoleukodystrophy: Evidence summary and advisory committee recommendation. Genet Med. 2017;19(1):121–6.

    Article  PubMed  Google Scholar 

  87. Gorman GS, Schaefer AM, Ng Y, Gomez N, Blakely EL, Alston CL, et al. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann Neurol. 2015;77(5):753–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Artuch R, Pavia C, Playan A, Vilaseca MA, Colomer J, Valls C, et al. Multiple endocrine involvement in two pediatric patients with Kearns-Sayre syndrome. Horm Res. 1998;50(2):99–104.

    CAS  PubMed  Google Scholar 

  89. Williams TB, Daniels M, Puthenveetil G, Chang R, Wang RY, Abdenur JE. Pearson syndrome: Unique endocrine manifestations including neonatal diabetes and adrenal insufficiency. Mol Genet Metab. 2012;106(1):104–7.

    Article  CAS  PubMed  Google Scholar 

  90. Boles RG, Roe T, Senadheera D, Mahnovski V, Wong LJ. Mitochondrial DNA deletion with Kearns Sayre syndrome in a child with Addison disease. Eur J Pediatr. 1998;157(8):643–7.

    Article  CAS  PubMed  Google Scholar 

  91. Afroze B, Amjad N, Ibrahim SH, Humayun KN, Yakob Y. Adrenal insufficiency in a child with MELAS syndrome. Brain Dev. 2014;36(10):924–7.

    Article  PubMed  Google Scholar 

  92. Sugiana C, Pagliarini DJ, McKenzie M, Kirby DM, Salemi R, Abu-Amero KK, et al. Mutation of C20orf7 disrupts complex I assembly and causes lethal neonatal mitochondrial disease. Am J Hum Genet. 2008;83(4):468–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kohda M, Tokuzawa Y, Kishita Y, Nyuzuki H, Moriyama Y, Mizuno Y, et al. A comprehensive genomic analysis reveals the genetic landscape of mitochondrial respiratory chain complex deficiencies. PLoS Genet. 2016;12(1):e1005679.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Heide S, Afenjar A, Edery P, Sanlaville D, Keren B, Rouen A, et al. Xp21 deletion in female patients with intellectual disability: Two new cases and a review of the literature. Eur J Med Genet. 2015;58(6–7):341–5.

    Article  PubMed  Google Scholar 

  95. Wikiera B, Jakubiak A, Zimowski J, Noczynska A, Smigiel R. Complex glycerol kinase deficiency - X-linked contiguous gene syndrome involving congenital adrenal hypoplasia, glycerol kinase deficiency, muscular Duchenne dystrophy and intellectual disability (IL1RAPL gene deletion). Pediatr Endocrinol Diabetes Metab. 2012;18(4):153–7.

    CAS  PubMed  Google Scholar 

  96. Peter M, Viemann M, Partsch CJ, Sippell WG. Congenital adrenal hypoplasia: Clinical spectrum, experience with hormonal diagnosis, and report on new point mutations of the DAX-1 gene. J Clin Endocrinol Metab. 1998;83(8):2666–74.

    Article  CAS  PubMed  Google Scholar 

  97. Niakan KK, McCabe ER. DAX1 origin, function, and novel role. Mol Genet Metab. 2005;86(1–2):70–83.

    Article  CAS  PubMed  Google Scholar 

  98. Steinberg SJ, Raymond GV, Braverman NE, Moser AB. Zellweger Spectrum Disorder. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al., editors. GeneReviews((R)). Seattle (WA)1993.

  99. Moser AB, Rasmussen M, Naidu S, Watkins PA, McGuinness M, Hajra AK, et al. Phenotype of patients with peroxisomal disorders subdivided into sixteen complementation groups. J Pediatr. 1995;127(1):13–22.

    Article  CAS  PubMed  Google Scholar 

  100. Govaerts L, Monnens L, Melis T, Trijbels F. Disturbed adrenocortical function in cerebro-hepato-renal syndrome of Zellweger. Eur J Pediatr. 1984;143(1):10–2.

    Article  CAS  PubMed  Google Scholar 

  101. Berendse K, Engelen M, Linthorst GE, van Trotsenburg AS, Poll-The BT. High prevalence of primary adrenal insufficiency in Zellweger spectrum disorders. Orphanet J Rare Dis. 2014;9:133.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Palsdottir A, Snorradottir AO, Thorsteinsson L. Hereditary Cystatin C Amyloid Angiopathy: Genetic, Clinical, and Pathological Aspects. Brain Pathol. 2006;16(1):55–59.

  103. Biffi A, Greenberg SM. Cerebral amyloid angiopathy: A systematic review. J Clin Neurol. 2011;7(1):1–9.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Ozdemir D, Dagdelen S, Erbas T. Endocrine involvement in systemic amyloidosis. Endocr Pract. 2010;16(6):1056–63.

    Article  PubMed  Google Scholar 

  105. Danby P, Harris KP, Williams B, Feehally J, Walls J. Adrenal dysfunction in patients with renal amyloid. Q J Med. 1990;76(281):915–22.

    CAS  PubMed  Google Scholar 

  106. Janecke AR, Xu R, Steichen-Gersdorf E, Waldegger S, Entenmann A, Giner T, et al. Deficiency of the sphingosine-1-phosphate lyase SGPL1 is associated with congenital nephrotic syndrome and congenital adrenal calcifications. Hum Mutat. 2017;38(4):365–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lovric S, Goncalves S, Gee HY, Oskouian B, Srinivas H, Choi WI, et al. Mutations in sphingosine-1-phosphate lyase cause nephrosis with ichthyosis and adrenal insufficiency. J Clin Invest. 2017;127(3):912–28.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Prasad R, Hadjidemetriou I, Maharaj A, Meimaridou E, Buonocore F, Saleem M, et al. Sphingosine-1-phosphate lyase mutations cause primary adrenal insufficiency and steroid-resistant nephrotic syndrome. J Clin Invest. 2017;127(3):942–53.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Hauser AC, Gessl A, Harm F, Wiesholzer M, Kleinert J, Wallner M, et al. Hormonal profile and fertility in patients with Anderson-Fabry disease. Int J Clin Pract. 2005;59(9):1025–8.

    Article  CAS  PubMed  Google Scholar 

  110. Faggiano A, Pisani A, Milone F, Gaccione M, Filippella M, Santoro A, et al. Endocrine dysfunction in patients with Fabry disease. J Clin Endocrinol Metab. 2006;91(11):4319–25.

    Article  CAS  PubMed  Google Scholar 

  111. Therrell BL. Newborn screening for congenital adrenal hyperplasia. Endocrinol Metab Clin N Am. 2001;30(1):15–30.

    Article  CAS  Google Scholar 

  112. Pang SY, Wallace MA, Hofman L, Thuline HC, Dorche C, Lyon IC, et al. Worldwide experience in newborn screening for classical congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Pediatrics. 1988;81(6):866–74.

    CAS  PubMed  Google Scholar 

  113. Pereira Fdos S, Matte U, Habekost CT, de Castilhos RM, El Husny AS, Lourenco CM, et al. Mutations, clinical findings and survival estimates in south American patients with X-linked adrenoleukodystrophy. PLoS One. 2012;7(3):e34195.

    Article  PubMed  CAS  Google Scholar 

  114. Deegan PB, Bahner F, Barba M, Hughes DA, Beck M. Fabry disease in females: Clinical characteristics and effects of enzyme replacement therapy. In: Mehta a, Beck M, sunder-Plassmann G, editors. Fabry disease: perspectives from 5 years of FOS. Oxford 2006.

Download references

Acknowledgements

This work was supported in part by the Intramural Research Programs of the National Institutes of Health Clinical Center and The Eunice Kennedy Shriver National Institute of Child Health of Human Development (NICHD). Both authors have contributed equally to the manuscript.

Funding

This work was supported in part by the Intramural Research Programs of the National Institutes of Health Clinical Center and The Eunice Kennedy Shriver National Institute of Child Health of Human Development (NICHD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantine A. Stratakis.

Ethics declarations

Conflict of interest

Author A declares that he has no conflict of interest. Author B declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hannah-Shmouni, F., Stratakis, C.A. An overview of inborn errors of metabolism manifesting with primary adrenal insufficiency. Rev Endocr Metab Disord 19, 53–67 (2018). https://doi.org/10.1007/s11154-018-9447-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-018-9447-2

Keywords

Navigation