Skip to main content
Log in

1D Modeling of the Microwave Discharge in Liquid n-Heptane Including Production of Carbonaceous Particles

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Microwave plasma in the liquid is initiated inside a gas bubble formed at the end of the electrode-antenna, through which microwave energy is introduced into the liquid. A 1D model a set of gas phase kinetic reactions describes the evolution processes of ionization, heat transfer and formation of gas and solid products inside the plasma bubble. The code is based on joint solution of the Boltzmann equation for free electrons of the plasma, a simplified equation for the microwave field, the heat conduction equation, the balance equation for the electron density and the balance equations for the weight fraction for all gas and solid products of n-heptane pyrolysis. The Joule heat released in the plasma is expended on the evaporation of liquid n-heptane into the bubble and the decomposition of the n-heptane molecules. The model includes both the description of gas phase processes and formation of solid carbon-containing particles. The growth mechanism for generation of solid particles describes simultaneous processes of the initial nucleation, surface growth and coagulation of soot particles. The results of calculations are compared with known experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bruggeman P, Leys C (2009) Non-thermal plasmas in and in contact with liquids. J Phys D Appl Phys 42:053001

    Article  CAS  Google Scholar 

  2. Graham WG, Stalder KR (2011) Plasmas in liquids and some of their applications in nanoscience. J Phys D Appl Phys 44:174037

    Article  CAS  Google Scholar 

  3. Samukawa S et al (2012) The 2012 Plasma Roadmap. J Phys D Appl Phys 45:253001

    Article  CAS  Google Scholar 

  4. Yang Y, Cho YI, Fridman A (2012) A plasma discharge in liquid: water treatment and application. CRC Press, Boca Raton

    Google Scholar 

  5. Locke BR (2012) Environmental applications of electrical discharge plasma with liquid water—a mini review. Int J Plas Environ Sci Technol 6:194–203

    Google Scholar 

  6. Bruggeman PJ et al (2016) Plasma–liquid interactions: a review and roadmap. Plasma Sour Sci Technol 25:053002

    Article  CAS  Google Scholar 

  7. Foster J (2017) Plasma-based water purification: challenges and prospects for the future. Phys Plasmas 24:055501

    Article  CAS  Google Scholar 

  8. Horikoshi S, Serpone N (2017) In-liquid plasma: a novel tool in the fabrication of a nanomaterials and in the treatment of wastewaters. RSC Adv 7:47196

    Article  CAS  Google Scholar 

  9. Lebedev YuA (2017) Microwave discharges in liquid dielectrics. Plasma Phys Rep 43:676

    Google Scholar 

  10. Lebedev YuA (2018) Microwave discharges in liquids: fields of applications. High Temp 52:5

    Google Scholar 

  11. Hattori Y, Mukasa S, Nomura S, Toyota H (2010) Optimization and analysis of shape of coaxial electrode for microwave plasma in water. J Appl Phys 107:063305

    Article  CAS  Google Scholar 

  12. Hattori Y, Mukasa S, Toyota H, Yamashita H, Nomura S (2012) Improvement in preventing metal contamination from an electrode used for generating microwave plasma in liquid–alumina. Surf Coat Technol 206:2140–2145

    Article  CAS  Google Scholar 

  13. Mukasa S, Nomura S, Toyota H (2007) Observation of microwave in-liquid plasma using high-speed camera. Jpn J Appl Phys 46:6015–6021

    Article  CAS  Google Scholar 

  14. Gidalevich E, Boxman RL (2012) Microwave excitation of submerged plasma bubbles. J Phys D Appl Phys 45:245204

    Article  CAS  Google Scholar 

  15. Levko D, Sharma A, Raja LL (2016) Plasmas generated in bubbles immersed in liquids: direct current streamers versus microwave plasma. J Phys D Appl Phys 49:285205

    Article  CAS  Google Scholar 

  16. Levko D, Sharma A, Raja LL (2016) Microwave plasmas generated in bubbles immersed in liquids for hydrocarbons reforming. J Phys D Appl Phys 49:22LT01

    Article  CAS  Google Scholar 

  17. Lebedev YuA, Tatarinov AV, Epstein IL, Averin KA (2016) The formation of gas bubbles by processing of liquid n-heptane in the microwave discharge. Plasma Chem Plasma Proc 36:535–552

    Article  CAS  Google Scholar 

  18. Lebedev YuA, Tatarinov AV, Epstein IL, Bilera IV (2018) A 0D kinetic model for the microwave discharge in liquid n-heptane including carbonaceous particles production. J Phys D Appl Phys 51:214007

    Article  CAS  Google Scholar 

  19. Averin KA, Lebedev YuA, Epstein IL, Shakhatov VA, Bilera IV (2019) Microwave discharge in liquid n-heptane with and without bubble flow of argon. Plasma Process Polym 16:e1800198

    Article  CAS  Google Scholar 

  20. Mehl M, Pitz WJ, Westbrook CK, Curran HJ (2011) Proc Combust Inst 33:193–200

    Article  CAS  Google Scholar 

  21. Curran HJ, Gaffuri P, Pitz WJ, Westbrook CK (1998) A comprehensive modeling study of n-heptane oxidation. Combust Flame 114:149–177

    Article  CAS  Google Scholar 

  22. Wang H, Frenklach M (1997) Combust Flame 110:173–221

    Article  CAS  Google Scholar 

  23. Wang H, Frenklach M (1994) J Phys Chem 98:11464

    Google Scholar 

  24. Hagelaar GJM, Pitchford LC (2005) Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sour Sci Technol 14:722–733

    Article  CAS  Google Scholar 

  25. Morgan Database (2014). www.lxcat.net. Retrieved 29 Aug 2014

  26. Slovetskii DI (1981) Decomposition of hydrocarbons in the glow discharge. In: Smirnov BM (ed) Proceedings of the chemistry of plasma. Energoizdat, Moscow (in Russian)

    Google Scholar 

  27. Vacher JR, Jorand F, Blin-Simiand N, Pasquiers S (2010) Electron impact ionization cross-sections of n-heptane. Int J Mass Spectrom 295:78

    Article  CAS  Google Scholar 

  28. Gildenburg VB, Markov GA (1982) Zh Eksp Teor Fiz Pis Red 8:1245 (in Russian)

    Google Scholar 

  29. Gildenburg VB, Goltsman VL, Semenov VE (1974) Izv VUZ Radiofiz 17:1718 (in Russian)

    Google Scholar 

  30. Fortov VE (ed) (2000) Encyclopedia of low temperature plasma, vol 1. Nauka, Moscow, pp 227–233 (in Russian)

    Google Scholar 

  31. Hirschfelder JO, Curtiss ChF, Bird RB (1954) Molecular theory of gases and liquids. Wiley, New York

    Google Scholar 

  32. Frenklach M, Clary DW, Gardiner WC, Stein SE (1985) Proc Combust Inst 12:887–901

    Article  Google Scholar 

  33. Razer YuP (1991) Gas discharge physics. Springer, Berlin

    Book  Google Scholar 

  34. Frenklach M, Wang H (1994) Detailed mechanism and modeling of soot particle formation. In: Bockhorn H (ed) Soot formation in combustion. Springer series in chemical physics. Springer, Berlin

    Google Scholar 

  35. Richter H, Howard JB (2000) Prog Energy Combust Sci 26:565–608

    Article  CAS  Google Scholar 

  36. Frenklach M (2002) Phys Chem Chem Phys 4:2028–2037

    Article  CAS  Google Scholar 

  37. Wang H (2011) Proc Combust Inst 33:41–67

    Article  CAS  Google Scholar 

  38. Agafonov GL, Bilera IV, Vlasov PA, Kolbanovskii YA, Smirnov VN, Tereza AM (2015) Kinet Catal 56:12–30

    Article  CAS  Google Scholar 

  39. Frenklach M, Wang H (1991) Proc Combust Inst 23:1559–1566

    Article  Google Scholar 

  40. Krestinin AV (1998) Chem Phys Rep 17:1441–1456

    Google Scholar 

  41. Merkulov AA, Ovsyannikov AA, Polak LS, Popov VT, Pustilnikov VY (1989) Plasma Chem Plasma Proc 9:95–120

    Article  CAS  Google Scholar 

  42. COMSOL 3.5a https://www.comsol.com. Accessed 5 Jan 2019

  43. Yuan T, Zhang L, Zhou Z, Xie M, Ye L, Qi F (2011) J Phys Chem A 115:1593

    Article  CAS  PubMed  Google Scholar 

  44. Garner S, Sivaramakrishnan R, Brezinsky K (2009) Proc Combust Inst 32:461

    Article  CAS  Google Scholar 

  45. Yasunaga K, Yamada H, Oshita H, Hattori K, Hidaka Y, Curran H (2017) Combust Flame 185:335

    Article  CAS  Google Scholar 

  46. Yampolskyi YuP (1990) Elementary reactions and the pyrolysis mechanism. Chemistry, Moscow (in Russian)

    Google Scholar 

Download references

Acknowledgements

This work was carried out within the State Program of TIPS RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Lebedev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedev, Y.A., Tatarinov, A.V. & Epstein, I.L. 1D Modeling of the Microwave Discharge in Liquid n-Heptane Including Production of Carbonaceous Particles. Plasma Chem Plasma Process 39, 787–808 (2019). https://doi.org/10.1007/s11090-019-09975-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-019-09975-8

Keywords

Navigation