Skip to main content

Advertisement

Log in

Quantitative Analysis of Ozone and Nitrogen Oxides Produced by a Low Power Miniaturized Surface Dielectric Barrier Discharge: Effect of Oxygen Content and Humidity Level

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

This study presented a quantitative evaluation of the performance of a low power miniaturized SDBD source for the production of ozone and nitrogen oxides as benchmarks of long-lived RONS. The effects of varying oxygen and humidity on the trend of the production efficiency are investigated. The oxygen content and the humidity had no noticeable effect on the total power consumed, but their level in the feeding gas has a strong impact on the production of NxOy. It is found also that there is an optimum level of the oxygen content and the humidity for the production of NO2 and N2O. The analysis of the results indicated that the nitrogen excited species, especially \({\text{N}}_{2 } \left( {A^{3} \varSigma_{u}^{ + } } \right)\) and N(2D) play vital roles in the production of the nitrogen oxides, particularly the NO, which considered as the main source for the other NxOy in the present system. Interestingly, it is found that the humidity has a positive effect on the NO2 production, while it has a negative effect on the N2O and O3, which implied that the present SDBD is a strong oxidizer for the formed NO. The rise in the gas temperature in the present SDBD was negligible and has no effect on the production of nitrogen oxides, while the temperature of the plasma channel might affect the RONS production efficiency. Investigating the production mechanisms and the energy efficiency, of the formed nitrogen oxides, unravels for the first time the performance of the SDBD for nitrogen fixation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Morgan NN (2009) Atmospheric pressure dielectric barrier discharge chemical and biological applications. Int J Phys Sci 4:885–892

    CAS  Google Scholar 

  2. Kim H-H (2004) Nonthermal plasma processing for air-pollution control: a historical Rreview, current issues, and future prospects. Plasma Process Polym 1:91–110

    Article  CAS  Google Scholar 

  3. Brandenburg R (2017) Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sources Sci Technol 26:053001

    Article  Google Scholar 

  4. Benard N, Moreau E (2014) Electrical and mechanical characteristics of surface AC dielectric barrier discharge plasma actuators applied to airflow control. Exp Fluids vol:55

    Article  CAS  Google Scholar 

  5. Abdelaziz A, Ishijima T, Seto T, Osawa N, Wedaa H, Otani Y (2016) Characterization of surface dielectric barrier discharge influenced by intermediate frequency for ozone production. Plasma Sources Sci Technol 25:035012

    Article  CAS  Google Scholar 

  6. Abdelaziz A, Seto T, Abdel-Salam M, Otani Y (2012) Performance of a surface dielectric barrier discharge based reactor for destruction of naphthalene in an air stream. J Phys D Appl Phys 45:115201

    Article  CAS  Google Scholar 

  7. Shimizu K, Yamada M, Kanamori M, Blajan M (2010) Basic study of bacteria inactivation at low discharge voltage by using microplasmas. IEEE Trans Ind Appl 46:641–649

    Article  CAS  Google Scholar 

  8. Malik MA, Kolb JF, Sun Y, Schoenbach KH (2011) Comparative study of NO removal in surface-plasma and volume-plasma reactors based on pulsed corona discharges. J Hazard Mater 197:220–228

    Article  CAS  PubMed  Google Scholar 

  9. Malik MA, Hughes D, Heller R, Schoenbach KH (2015) Surface plasmas versus volume plasma: energy deposition and ozone generation in air and oxygen. Plasma Chem Plasma Process 35:697–704

    Article  CAS  Google Scholar 

  10. Masuda S, Akutsu K, Kuroda M, Awatsu Y, Shibuya Y (1988) A ceramic-based ozonizer using high-frequency discharge. IEEE Trans Ind Appl 24:223–232

    Article  CAS  Google Scholar 

  11. McAdams R (2001) Prospects for non-thermal atmospheric plasmas for pollution abatement. J Phys D Appl Phys 34:2810–2821

    Article  CAS  Google Scholar 

  12. Pavlovich MJ, Clark DS, Graves DB (2014) Quantification of air plasma chemistry for surface disinfection. Plasma Sources Sci Technol 23:065036

    Article  CAS  Google Scholar 

  13. Jeon J, Klaempfl TG, Zimmermann JL, Morfill GE, Shimizu T (2014) Sporicidal properties from surface micro-discharge plasma under different plasma conditions at different humidities. New J Phys 16:103007

    Article  CAS  Google Scholar 

  14. Maisch T, Shimizu T, Li YF, Heinlin J, Karrer S, Morfill G, Zimmermann JL (2012) Decolonisation of MRSA, S. aureus and E. coli by cold-atmospheric plasma using a porcine skin model in vitro. PLoS ONE 7:e34610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Morfill GE, Shimizu T, Steffes B, Schmidt HU (2009) Nosocomial infections—a new approach towards preventive medicine using plasmas. New J Phys 11:115019

    Article  CAS  Google Scholar 

  16. Jeon J, Rosentreter TM, Li Y, Isbary G, Thomas HM, Zimmermann JL et al (2014) Bactericidal agents produced by surface micro-discharge (SMD) plasma by controlling gas compositions. Plasma Process Polym 11:426–436

    Article  CAS  Google Scholar 

  17. Koga K, Thapanut S, Amano T, Seo H, Itagaki N, Hayashi N et al (2016) Simple method of improving harvest by nonthermal air plasma irradiation of seeds of Arabidopsis thaliana (L.). Appl Phys Express 9:016201

    Article  CAS  Google Scholar 

  18. Shimizu T, Sakiyama Y, Graves DB, Zimmermann JL, Morfill GE (2012) The dynamics of ozone generation and mode transition in air surface micro-discharge plasma at atmospheric pressure. New J Phys 14:103028

    Article  CAS  Google Scholar 

  19. Li S, Ma X, Jiang Y, Cao X (2014) Acetamiprid removal in wastewater by the low-temperature plasma using dielectric barrier discharge. Ecotoxicol Environ Saf 106:146–153

    Article  CAS  PubMed  Google Scholar 

  20. Pekárek S (2012) Experimental study of surface dielectric barrier discharge in air and its ozone production. J Phys D Appl Phys 45:075201

    Article  CAS  Google Scholar 

  21. Pekárek S (2013) Asymmetric properties and ozone production of surface dielectric barrier discharge with different electrode configurations. Eur Phys J D 67:94

    Article  CAS  Google Scholar 

  22. Malik MA, Schoenbach KH, Heller R (2014) Coupled surface dielectric barrier discharge reactor-ozone synthesis and nitric oxide conversion from air. Chem Eng J 256:222–229

    Article  CAS  Google Scholar 

  23. Mastanaiah N, Banerjee P, Johnson JA, Roy S (2013) Examining the role of ozone in surface plasma sterilization using dielectric barrier discharge (DBD) plasma. Plasma Process Polym 10:1120–1133

    Article  CAS  Google Scholar 

  24. Pavlovich MJ, Chang H-W, Sakiyama Y, Clark DS, Graves DB (2013) Ozone correlates with antibacterial effects from indirect air dielectric barrier discharge treatment of water. J Phys D Appl Phys 46:145202

    Article  CAS  Google Scholar 

  25. Jodzis S, Smolinski T, Sowka P et al (2011) Ozone synthesis under surface discharges in oxygen: application of a concentric actuator. IEEE Trans Plasma Sci 39:1055–1060

    Article  CAS  Google Scholar 

  26. Schnabel U, Andrasch M, Weltmann K-D, Ehlbeck J (2014) Inactivation of vegetative microorganisms and bacillus atrophaeus endospores by reactive nitrogen species (RNS). Plasma Processes Polym 11:110–116

    Article  CAS  Google Scholar 

  27. Sakai S, Matsuda M, Wang D, Namihira T, Akiyama H, Okamoto K et al (2009) Nitric oxide generator based on pulsed arc discharge. Acta Phys Pol A 115:1104–1106

    Article  CAS  Google Scholar 

  28. Douat C, Hübner S, Engeln R, Benedikt J (2016) Production of nitric/nitrous oxide by an atmospheric pressure plasma jet. Plasma Sources Sci Technol 25:025027

    Article  CAS  Google Scholar 

  29. Oehmigen K, Hähnel M, Brandenburg R, Wilke C, Weltmann KD, von Woedtke T (2010) The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids. Plasma Process Polym 7:250–257

    Article  CAS  Google Scholar 

  30. Chen CW, Lee HM, Chang MB (2008) Inactivation of aquatic microorganisms by low-frequency AC discharges. IEEE Trans Plasma Sci 36:215–219

    Article  Google Scholar 

  31. Graves DB (2012) The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J Phys D Appl Phys 45:263001

    Article  CAS  Google Scholar 

  32. Tian W, Kushner MJ (2014) Atmospheric pressure dielectric barrier discharges interacting with liquid covered tissue. J Phys D Appl Phys 47:165201

    Article  CAS  Google Scholar 

  33. Patil BS, Wang Q, Hessel V, Lang J (2015) Plasma N2-fixation: 1900–2014. Catal Today 256:49–66

    Article  CAS  Google Scholar 

  34. Simek M, Pekarek S, Prukner V (2012) Ozone production using a power modulated surface dielectric barrier discharge in dry synthetic air. Plasma Chem Plasma Process 32:743–754

    Article  CAS  Google Scholar 

  35. Hong D, Rabat H, Bauchire JM, Chang MB (2014) Measurement of ozone production in non-thermal plasma actuator using surface dielectric barrier discharge. Plasma Chem Plasma Process 34:887–897

    Article  CAS  Google Scholar 

  36. Herron JT (2001) Modeling studies of the formation and destruction of NO in pulsed barrier discharges in nitrogen and air. Plasma Chem Plasma Process 21:581–610

    Article  CAS  Google Scholar 

  37. Atkinson R, Baulch DL, Cox RA, Crowley JN, Hampson RF, Hynes RG, Jenkin ME, Rossi MJ, Troe J (2004) Evaluated kinetic and photochemical data for atmospheric chemistry: volume I—gas phase reactions of Ox, HOx, NOx and SOx species. Atoms. Chem. Phys. 4:1461–1738

    Article  CAS  Google Scholar 

  38. Teodoru S, Kusano Y, Bogaerts A (2012) The effect of O2 in a humid O2/N2/NOx gas mixture on NOx and N2O remediation by an atmospheric pressure dielectric barrier discharge. Plasma Process Polym 9:652–689

    Article  CAS  Google Scholar 

  39. Tálský A, Štec O, Pazderka M, Kudrle V (2017) Kinetic study of atmospheric pressure nitrogen plasma afterglow using quantitative electron spin resonance spectroscopy. J Spectrosc 2017:1–10

    Article  CAS  Google Scholar 

  40. Forte M, Jolibois J, Pons J, Moreau E, Touchard G, Cazalens M (2007) Optimization of a dielectric barrier discharge actuator by stationary and non-stationary measurements of the induced flow velocity: application to airflow control. Exp Fluids 43:917–928

    Article  Google Scholar 

  41. Kotsonis M (2015) Diagnostics for characterisation of plasma actuators. Meas Sci Technol 26:092001

    Article  CAS  Google Scholar 

  42. Abdelaziz A, Seto T, Abdel-Salam M, Otani Y (2014) Influence of N2/O2 mixtures on decomposition of naphthalene in surface dielectric barrier discharge based reactor. Plasma Chem Plasma Process 34:1371–1385

    Article  CAS  Google Scholar 

  43. Font GI, Enloe CL, Newcomb JY, Teague AL, Vasso AR, McLaughlin TE (2011) Effects of oxygen content on dielectric behavior barrier discharge plasma actuator behavior. AIAA J 49:1366–1373

    Article  CAS  Google Scholar 

  44. Koeta O, Blin-Simiand N, Pasquiers S, Jordan F, Bary A (2012) Effect of oxygen percentage on the removal of acetaldehyde by dielectric barrier discharge. Int J Plasma Environ Sci Technol 6:227–232

    Google Scholar 

  45. Pan J, Tan Z, Liu Y, Pan G, Wang X (2015) Effects of oxygen concentration on atmospheric-pressure pulsed dielectric barrier discharges in argon/oxygen mixture. Phys Plasmas 22:093515

    Article  CAS  Google Scholar 

  46. Guo Y, Liao X, Fu M, Huang H, Ye D (2015) Toluene decomposition performance and NOx by-product formation during a DBD-catalyst process. J Environ Sci (China) 28:187–194

    Article  CAS  Google Scholar 

  47. Cooray V, Rahman M (2005) Efficiencies for production of NOx and O3 by streamer discharges in air at atmospheric pressure. J Electrostat 63:977–983

    Article  CAS  Google Scholar 

  48. Kogelschatz U, Baessler P (1987) Determination of nitrous oxide and dinitrogen pentoxide concentrations in the output of air-fed ozone generators of high power density. Ozone Sci Eng 9:195–206

    Article  CAS  Google Scholar 

  49. Kogelschatz U, Eliasson B, Hirth M (1988) Ozone generation from oxygen and air-discharge physics and reaction mechanisms. Ozone Sci Eng 10:367–378

    Article  CAS  Google Scholar 

  50. Marode E, Djermoune D, Dessante P, Deniset C, Ségur P, Bastien F, Bourdon A, Laux C (2009) Physics and applications of atmospheric non-thermal air plasma with reference to environment. Plasma Phys Control Fusion 51:124002

    Article  CAS  Google Scholar 

  51. Gherardi N, Osawa N, Tsuji T, Ogiso R, Yoshioka Y, Hoder T (2017) Effect of nitrogen addition to ozone generation characteristics by diffuse and filamentary dielectric barrier discharges at atmospheric pressure. Eur Phys J Appl Phys 78:20804

    Article  CAS  Google Scholar 

  52. Hensel K, Machala Z, Tardiveau P (2009) Capillary microplasmas for ozone generation. Eur Phys J Appl Phys 47:22813–22818

    Article  CAS  Google Scholar 

  53. Whitehead JC (2010) Plasma catalysis: a solution for environmental problems. Pure Appl Chem. 82:1329–1336

    Article  CAS  Google Scholar 

  54. Heintze M, Pietruszka B (2004) Plasma catalytic conversion of methane into syngas: the combined effect of discharge activation and catalysis. Catal Today 89:21–25

    Article  CAS  Google Scholar 

  55. Yan K, Kanazawa S, Ohkubo T, Nomoto Y (1999) Oxidation and reduction processes during NOx removal with corona-induced nonthermal plasma. Plasma Chem Plasma Process 19:421–443

    Article  CAS  Google Scholar 

  56. Mok YS, Lee H-J (2006) Removal of sulfur dioxide and nitrogen oxides by using ozone injection and absorption–reduction technique. Fuel Process Technol 87:591–597

    Article  CAS  Google Scholar 

  57. Jodzis S (2011) Application of technical kinetics for macroscopic analysis of ozone synthesis process. Ind Eng Chem Res 50:6053–6060

    Article  CAS  Google Scholar 

  58. Kong MG, Kroesen G, Morfill G, Nosenko T, Shimizu T, van Dijk J, Zimmermann JL (2009) Plasma medicine: an introductory review. New J Phys 11:115012

    Article  Google Scholar 

  59. Jodzis S (2002) Effect of silica packing on ozone synthesis from oxygen–nitrogen mixtures. Ozone Sci Eng 25:63–72

    Article  Google Scholar 

  60. Fan X, Kang S, Li J, Zhu T (2018) Conversion of dilute nitrous oxide (N2O) in N2 and N2–O2 mixtures by plasma and plasma-catalytic processes. RSC Adv 8:26998–27007

    Article  CAS  Google Scholar 

  61. Penetrante BM, Bardsley JN, Hsiao MC (1997) Kinetic analysis of non-thermal plasmas used for pollution control. Jpn J Appl Phys 36:5007–5017

    Article  CAS  Google Scholar 

  62. Yin S-E, Sun B-M, Gao X-D, Xiao H-P (2009) The effect of oxygen and water vapor on nitric oxide conversion with a dielectric barrier discharge reactor. Plasma Chem Plasma Process 29:421–431

    Article  CAS  Google Scholar 

  63. Trinh Q-H, Kim SH, Mok YS (2016) Removal of dilute nitrous oxide from gas streams using a cyclic zeolite adsorption–plasma decomposition process. Chem Eng J 302:12–22

    Article  CAS  Google Scholar 

  64. Fouad L, Elhazek S (1995) Effect of humidity on positive corona discharge in a three electrode system. J Electrostat 35:21–30

    Article  Google Scholar 

  65. Fridman A (ed) (2008) Plasma chemistry. Cambridge University Press, New York

    Google Scholar 

  66. Abdelaziz AA, Ishijima T, Seto T (2018) Humidity effects on surface dielectric barrier discharge for gaseous naphthalene decomposition. Phys Plasmas 25:043512

    Article  CAS  Google Scholar 

  67. Hähnel M, von Woedtke T, Weltmann K-D (2010) Influence of the air humidity on the reduction of bacillus spores in a defined environment at atmospheric pressure using a dielectric barrier surface discharge. Plasma Process Polym 7:244–249

    Article  CAS  Google Scholar 

  68. Chiper A, Simiand N, Jorand F, Pasquiers S, Popa G, Postel C (2006) Influence of water vapour on acetaldehyde removal efficiency by DBD. J Optoelectron Adv Mater 8:208–211

    CAS  Google Scholar 

  69. Sivachandiran L, Khacef A (2016) In situ and ex situ NO oxidation assisted by sub-microsecond pulsed multi-pin-to-plane corona discharge: the effect of pin density. RSC Adv 6:29983–29995

    Article  CAS  Google Scholar 

  70. Tang X, Wang J, Yi H, Zhao S, Gao F, Chu C (2018) Nitrogen fixation and NO conversion using dielectric barrier discharge reactor: identification and evolution of products. Plasma Chem Plasma Process 38:485–501

    Article  CAS  Google Scholar 

  71. Ono R, Teramoto Y, Oda T (2010) Effect of humidity on gas temperature in the afterglow of pulsed positive corona discharge. Plasma Sources Sci Technol 19:015009

    Article  CAS  Google Scholar 

  72. McKay K, Liu DX, Rong MZ, Iza F, Kong MG (2012) Generation and loss of reactive oxygen species in low-temperature atmospheric-pressure RF He + O2 + H2O plasmas. J Phys D Appl Phys 45:172001

    Article  CAS  Google Scholar 

  73. Lukes P, Clupek M, Babicky V, Janda V, Sunka P (2005) Generation of ozone by pulsed corona discharge over water surface in hybrid gas–liquid electrical discharge reactor. J Phys D Appl Phys 38:409–416

    Article  CAS  Google Scholar 

  74. Ma T, Zhao Q, Liu J, Zhong F (2016) Study of humidity effect on benzene decomposition by the dielectric barrier discharge nonthermal plasma reactor. Plasma Sci Technol 18:686–692

    Article  CAS  Google Scholar 

  75. Matsui K, Ikenaga N, Sakudo N (2015) Effects of humidity on sterilization of Geobacillus stearothermophilus spores with plasma-excited neutral gas. Jpn J Appl Phys 54:p. 06GD02

    Google Scholar 

  76. Junhong C, Pengxiang W (2005) Effect of relative humidity on electron distribution and ozone production by DC coronas in air. IEEE Trans Plasma Sci 33:808–812

    Article  CAS  Google Scholar 

  77. Herron JT, Green DS (2001) Chemical kinetics database and predictive schemes for nonthermal humid air plasma chemistry. Part II. Neutral species reactions. Plasma Chem Plasma Process 21:459–481

    Article  CAS  Google Scholar 

  78. Gray D, Lissi E, Heicklen J (1972) Reaction of hydrogen peroxide with nitrogen dioxide and nitric oxide. J Phys Chem 76:1919–1924

    Article  CAS  Google Scholar 

  79. Mok YS, Koh DJ, Shin DN, Kim KT (2004) Reduction of nitrogen oxides from simulated exhaust gas by using plasma–catalytic process. Fuel Process Technol 86:303–317

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Chubu foundation fellowship program (2015). Dr. Ayman A. Abdelaziz thanks Chubu foundation for supporting his fellowship research at the Kanazawa University. Thanks are due to Mr. Takafumi Tsuji and Mr. Shingo Hayamizu for the assistance offered during the measurements of the nitrogen oxides by the FTIR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayman A. Abdelaziz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelaziz, A.A., Ishijima, T., Osawa, N. et al. Quantitative Analysis of Ozone and Nitrogen Oxides Produced by a Low Power Miniaturized Surface Dielectric Barrier Discharge: Effect of Oxygen Content and Humidity Level. Plasma Chem Plasma Process 39, 165–185 (2019). https://doi.org/10.1007/s11090-018-9942-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-018-9942-y

Keywords

Navigation