Skip to main content
Log in

On the zero point problem of monotone operators in Hadamard spaces

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, by using products of finitely many resolvents of monotone operators, we propose an iterative algorithm for finding a common zero of a finite family of monotone operators and a common fixed point of an infinitely countable family of nonexpansive mappings in Hadamard spaces. We derive the strong convergence of the proposed algorithm under appropriate conditions. A common fixed point of an infinitely countable family of quasi-nonexpansive mappings and a common zero of a finite family of monotone operators are also approximated in reflexive Hadamard spaces. In addition, we define a norm on X := spanX and give an application of this norm, where X is an Hadamard space with dual space X. A numerical example to solve a nonconvex optimization problem will be exhibited in an Hadamard space to support our main results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aoyama, K., Kamimura, Y., Takahashi, W., Toyoda, M.: Approximation of common fixed point of a countable family of nonexpansive mappings in a Banach space. Nonlinear Anal. 67, 2350–2360 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bačák, M.: Convex Analysis and Optimization in Hadamard Spaces, Volume 22 of De Gruyter Series in Nonlinear Analysis and Applications. De Gruyter, Berlin (2014)

    MATH  Google Scholar 

  3. Bačák, M., Reich, S.: The asymptotic behavior of a class of nonlinear semigroups in Hadamard spaces. J. Fixed Point Theory Appl. 16, 189–202 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bauschke, H.H., Matoušková, E., Reich, S.: Projection and proximal point methods: Convergence results and counterexamples. Nonlinear Anal. 56, 715–738 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berg, I.D., Nikolaev, I.G.: Quasilinearization and curvature of Alexandrov spaces. Geom. Dedi- cata 133, 195–218 (2008)

    Article  MATH  Google Scholar 

  6. Bruck, R.E.: A strongly convergent iterative solution of 0 ∈ U(x) for a maximal monotone operator in Hilbert spaces. J. Math. Anal. Appl. 48, 114–126 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bruck, R.E., Reich, S.: Nonexpansive projections and resolvents of accretive operators in Banach spaces. Houston J. Math. 3, 459–470 (1977)

    MathSciNet  MATH  Google Scholar 

  8. Bruck, R.E., Reich, S.: A general convergence principle in nonlinear functional analysis. Nonlinear Anal. 4, 939–950 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chaipunya, P., Kumam, P.: On the proximal point method in Hadamard spaces. Optimization 66, 1647–1665 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chaoha, P., Phon-on, A.: A note on fixed point sets in C A T(0) spaces. J. Math. Anal. Appl. 320, 983–987 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cholamjiak, P.: The modified proximal point algorithm in C A T(0) spaces. J. Optim. Lett. 9, 1401–1410 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing. In: Bauschke, H. H., Burachik, R., Combettes, P. L., Elser, V., Luke, D.R., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp 185–212. Springer, New York (2011)

    Chapter  Google Scholar 

  13. Da Cruz Neto, J.X., Ferreira, O.P., Lucambio Pérez, L.R.: Monotone point-to-set vector fields. Balkan J. Geom. Appl. 5, 69–79 (2000)

    MathSciNet  MATH  Google Scholar 

  14. Da Cruz Neto, J.X., Ferreira, O.P., Lucambio Pérez, L.R.: Contributions to the study of monotone vector fields. Acta Math. Hungar. 94, 307–320 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Da Cruz Neto, J.X., Ferreira, O.P., Lucambio Prez, L.R., Németh, S.Z.: Convex- and monotone-transformable mathematical programming problems and a proximal-like point method. J. Global Optim. 35(1), 53–69 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dehghan, H., Rooin, J.: A characterization of metric projection in C A T(0) spaces. In: International Conference on Functional Equation, Geometric Functions and Applications (ICFGA 2012) 11-12 th May 2012, pp. 41–43. Payame University, Tabriz (2012)

  17. Dhompongsa, S., Kaewkhao, A., Panyanak, B.: On Kirk’s strong convergence theorem for multivalued nonexpansive mappings on C A T(0) spaces. Nonlinear Anal. 75, 459–468 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dhompongsa, S., Kirk, W.A., Sims, B.: Fixed points of uniformly Lipschitzian mappings. Nonlinear Anal. 65, 762–772 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dhompongsa, S., Panyanak, B.: On Δ-convergence theorems in C A T(0) spaces. Comput. Math. Appl. 56, 2572–2579 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Eskandani, G.Z., Raeisi, M.: A new algorithm for finding fixed points of Bregman quasi-nonexpansive mappings and zeros of maximal monotone operators by using products of resolvents. Result Math. 71, 1307–1326 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Eskandani, G.Z., Azarmi, S., Eslamian, M.: Composition of resolvents and quasi-nonexpansive multivalued mappings in Hadamared spaces. Bult. Iran. Math. Soc. 6, 1939–1955 (2017)

    MATH  Google Scholar 

  22. Eskandani, G.Z., Azarmi, S., Raeisi, M.: Products of resolvents and multivalued hybrid mappings in C A T(0) spaces. Acta Math. Sci. 38, 791–804 (2018)

    Article  MathSciNet  Google Scholar 

  23. Ferreira, O.P., Lucambio Pérez, L.R., Németh, S.Z.: Singularities of monotone vector fields and an extragradient-type algorithm. J. Global Optim. 31, 133–151 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ferreira, O.P., Oliveira, P.R.: Proximal point algorithm on Riemannian manifolds. Optimization 51, 257–270 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Goebel, K., Reich, S.: Uniform convexity, hyperbolic geometry, and nonexpansive mappings. Volume 83 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker Inc., New York (1984)

    Google Scholar 

  26. Güler, O.: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 29, 403–419 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. Huang, S., Kimura, Y.: A projection method for approximating fixed points of quasi-nonexpansive mappings in Hadamard spaces. Fixed Point Theory Appl. 36, 1–13 (2016)

    Google Scholar 

  28. Kakavandi, B.A.: Weak topologies in complete C A T(0) metric spaces. Proc. Amer. Math. Soc. 141, 1029–1039 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kakavandi, B.A., Amini, M.: Duality and subdifferential for convex functions on complete C A T(0) metric spaces. Nonlinear Anal. 73, 3450–3455 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kamimura, S., Takahashi, W.: Approximating solutions of maximal monotone operators in Hilbert spaces. J. Approx. Theory 13, 226–240 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Khatibzadeh, H., Ranjbar, S.: Monotone operators and the proximal point algorithm in complete C A T(0) metric spaces. J. Aust. Math. Soc. 103, 70–90 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kirk, W.A., Panyanak, B.: A concept of convergence in geodesic spaces. Nonlinear Anal. 68, 3689–3696 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kopecká, E., Reich, S.: Hyperbolic monotonicity in the Hilbert ball. Fixed Point Theory Appl. Art. ID 78104, 15 pages (2006)

  34. Kopecká, E., Reich, S.: Asymptotic behavior of resolvents of coaccretive operators in the Hilbert ball. Nonlinear Anal. 70, 3187–3194 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, C., López, G., Martín-Márquez, V.: Monotone vector fields and the proximal point algorithm on Hadamard manifolds. J. Lond. Math. Soc. 79, 663–683 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Maingé, P.E.: Strong convergence of projected pubgradient methods for nonsmooth and nonstrictly convex minimization. Set-valued Anal. 16, 899–912 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Martinet, B.: Régularisation dinéquations variationelles par approximations successives. Revue Fr. Inform. Rech. Oper. 4, 154–159 (1970)

    MATH  Google Scholar 

  38. Nevanlinna, O., Reich, S.: Strong convergence of contraction semigroups and of iterative methods for accretive operators in Banach spaces. Isr J. Math. 32, 44–58 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  39. Németh, S.Z.: Monotone vector fields. Publ. Math. Debrecen. 54, 437–449 (1999)

    MathSciNet  MATH  Google Scholar 

  40. Raeisi, M., Eskandani, G.Z., Eslamian, M.: A general algorithm for multiple-sets split feasibility problem involving resolvents and Bregman mappings. Optimization 68, 309–327 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  41. Reich, S.: Constructive techniques for accretive and monotone operators. In: Applied Nonlinear Analysis, pp 335–345. Academic Press, New York (1979)

    Google Scholar 

  42. Reich, S.: Strong convergence theorems for resolvents of accretive operators in Banach spaces. J. Math. Anal. Appl. 75, 287–292 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  43. Reich, S.: A weak convergence theorem for the alternating method with Bregman distances. In: Theory and Applications of Nonlinear Operators, pp 313–318. Marcel Dekker, New York (1996)

    Google Scholar 

  44. Reich, S., Salinas, Z.: Infinite products of discontinuous operators in Banach and metric spaces. Linear Nonlinear Anal. 1, 169–200 (2015)

    MathSciNet  MATH  Google Scholar 

  45. Reich, S., Salinas, Z.: Weak convergence of infinite products of operators in Hadamard spaces. Rend. Circ. Mat. Palermo 65, 55–71 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Reich, S., Shafrir, I.: Nonexpansive iterations in hyperbolic spaces. Nonlinear Anal. 15, 537–558 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  47. Reich, S., Shemen, L.: A note on Halpern’s algorithm in the Hilbert ball. J. Nonlinear Convex Anal. 14, 853–862 (2013)

    MathSciNet  MATH  Google Scholar 

  48. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  49. Saejung, S.: Halpern’s iteration in C A T(0) spaces. Fixed Point Theory Appl. 2010, 471781 (2010)

    MathSciNet  MATH  Google Scholar 

  50. Shioji, N., Takahashi, W.: Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces. Proc. Amer. Math. Soc. 125, 3641–3645 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  51. Suparatulatorn, R., Cholamjiak, P., Suantai, S.: On solving the minimization problem and the fixed-point problem for nonexpansive mapping in C A T(0) spaces. Optim. Meth. Soft., 182–192 (2017)

  52. Wangkeeree, R., Preechasilp, P.: Viscosity approximation methods for nonexpansive mappings in C A T(0) spaces. J. Inequal. Appl. 2013, 93 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  53. Xu, H.K.: Another control condition in an iterative method for nonexpansive mappings. Bull. Austral. Math. Soc. 65, 109–113 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Zamani Eskandani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eskandani, G.Z., Raeisi, M. On the zero point problem of monotone operators in Hadamard spaces. Numer Algor 80, 1155–1179 (2019). https://doi.org/10.1007/s11075-018-0521-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-018-0521-3

Keywords

Mathematics Subject Classification (2010)

Navigation