Skip to main content
Log in

A PEG-grafted carbon hybrid as sulfur host for high-performance lithium-sulfur batteries

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Sulfur, as a cathode material for lithium-sulfur batteries, has a highly theoretical capacity of 1672 mAh g−1. However, the diffusion and dissolution of intermediate polysulfides and volume changes result in a rapid decay of capacity. In this work, an acidifying acetylene black/carbon nanotubes@sulfur (H-AB/CNTs@S) hybrid electrode material with a 3D interlinked network structure has been synthesized by grafting polyethylene glycol (PEG) and then depositing elemental sulfur on the commercial H-AB/CNTs hybrid surface. The H-AB/CNTs@S hybrids are characterized by Fourier transform infrared (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and electrochemical methods. The H-AB/CNTs hybrid substrate provides electrons and Li ion transfer pathway for the sulfur electrode. The PEG chains with abundant hydrophilic functional groups can help alleviate the diffusion of hydrophilic polysulfides. As a result, the H-AB/CNTs@S hybrid electrode with PEG delivers a high initial discharge capacity of 1380 mAh g−1 at a current density of 0.1 C and remains at 923 mAh g−1 after 100 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Barchasz C, Molton F, Duboc C, Leprêtre JC, Patoux S, Alloin F (2012) Lithium/sulfur cell discharge mechanism: an original approach for intermediate species identification. Anal Chem 84:3973–3980

    Article  CAS  Google Scholar 

  • Chen JJ, Jia X, She QJ, Wang C, Zhang Q, Zheng MS, Dong QF (2010) The preparation of nano-sulfur/MWCNTs and its electrochemical performance. Electrochim Acta 55:8062–8066

    Article  CAS  Google Scholar 

  • Chen SQ, Sun B, Xie XQ, KumarMondal A, Huang XD, Wang GX (2015) Multi-chambered micro/mesoporous carbon nanocubes as new polysulfides reserviors for lithium-sulfur batteries with long cycle life. Nano Energy 16:268–280

    Article  CAS  Google Scholar 

  • Cheng XB, Huang JQ, Zhang Q, Peng HJ, Zhao MQ, Wei F (2014) Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium-sulfur batteries. Nano Energy 4:65–72

    Article  CAS  Google Scholar 

  • Cheng Z, Xiao Z, Pan H, Wang S, Wang R (2017) Elastic sandwich-type rGO-VS2/S composites with high tap density: structural and chemical cooperativity enabling lithium-sulfur batteries with high energy density. Adv Energy Mater 8:1702337

    Article  Google Scholar 

  • Choi YJ, Chung YD, Baek CY, Kim KW, Ahn HJ, Ahn JH (2008) Effects of carbon coating on the electrochemical properties of sulfur cathode for lithium/sulfur cell. J Power Sources 184:548–552

    Article  CAS  Google Scholar 

  • Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–303

    Article  CAS  Google Scholar 

  • Chung S, Manthiram A (2015) Bifunctional separator with a light-weight carbon-coating for dynamically and statically stable lithium-sulfur batteries. Adv Funct Mater 24(33):5299–5306

    Article  Google Scholar 

  • Fan L, Chen S, Zhu J, Ma R, Li S, Podila R, Rao AM, Yang G, Wang C, Liu Q, Xu Z, Yuan L, Huang Y, Lu B (2018) Simultaneous suppression of the dendrite formation and shuttle effect in a lithium-sulfur battery by bilateral solid electrolyte interface. Adv Sci 5:1700934

    Article  Google Scholar 

  • Freitag A, Stamm M, Ionov L (2017) Separator for lithium-sulfur battery based on polymer blend membrane. J Power Sources 363:384–391

    Article  CAS  Google Scholar 

  • Gao G, Pan M, Vecitis CD (2015) Effect of oxidation approach on carbon nanotube surface functional groups and electrooxidative filtration performance. J Mater Chem A 3:7575–7582

    Article  CAS  Google Scholar 

  • Gu X, Wang Y, Lai C, Qiu J, Li S, Hou Y, Martens W, Mahmood N, Zhang S (2015) Microporous bamboo biochar for lithium-sulfur battery. Nano Res 8:129–139

    Article  CAS  Google Scholar 

  • Guo J, Zhang M, Yan S, Yan X, Wei S (2018) Electrochemical properties of modified acetylene black/sulfur composite cathode material for lithium/sulfur batteries. Ionics 24:2219–2225

    Article  Google Scholar 

  • Huang H, Nazar LF (2001) Grafted metal oxide/polymer/carbon nanostructures exhibiting fast transport properties. Angew Chem Int Ed 40:3880–3884

    Article  CAS  Google Scholar 

  • Hu G, Sun Z, Shi C, Fang R, Chen J, Hou P, Liu C, Cheng HM, Li F (2017) A sulfur-rich copolymer@CNT hybrid cathode with dual-confinement of polysulfides for high-performance lithium-sulfur batteries. Adv Mater 29:1603835

    Article  Google Scholar 

  • Hwang J, Kim HM, Lee S, Lee J, Abouimrane A, Khaleel MA, Belharouak I, Manthiram A, Sun Y (2016) High-energy, high-rate, lithium-sulfur batteries: synergetic effect of hollow TiO2-webbed carbon nanotubes and a dual functional carbon-paper interlayer. Adv Energy Mater 6:1501480–1501486

    Article  Google Scholar 

  • Jayaprakash N, Shen J, Moganty SS, Corona A, Archer LA (2011) Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew Chem 50:5904–5908

    Article  CAS  Google Scholar 

  • Ji L, Rao M, Zheng H, Zhang L, Li Y, Duan W, Guo J, Cairns EJ, Zhang Y (2011) Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J Am Chem Soc 133:18522–18525

    Article  CAS  Google Scholar 

  • Ji X, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater 8:500–506

    Article  CAS  Google Scholar 

  • Ji XL, Nazar LF (2010) Advances in Li-S batteries. J Mater Chem 20:9821–9826

    Article  CAS  Google Scholar 

  • Jung SC, Han YK (2016) Monoclinic sulfur cathode utilizing carbon for high-performance lithium-sulfur batteries. J Power Sources 325:495–500

    Article  CAS  Google Scholar 

  • Kim H, Lee JT, Yushin G (2013) High temperature stabilization of lithium-sulfur cells with carbon nanotube current collector. J Power Sources 226:256–265

    Article  CAS  Google Scholar 

  • Li H, Sun L, Wang G (2016a) Self-assembly of polyethylene glycol-grafted carbon nanotube/sulfur composite with nest-like structure for high-performance lithium-sulfur batteries. ACS Appl Mater Interfaces 8:6061–6071

    Article  CAS  Google Scholar 

  • Li L, Peng S, Chen HY, Han X, Cheng F, Srinivasan M, Adams S, Ramakrishna S, Chen J (2016b) Polypyrrole-coated hierarchical porous composites nanoarchitectures for advanced solid-state flexible hybrid devices. Nano Energy 19:307–317

    Article  CAS  Google Scholar 

  • Li Q, Zhang Z, Zhang K, Fang J, Lai Y, Li J (2014) A simple synthesis of hollow carbon nanofiber-sulfur composite via mixed-solvent process for lithium-sulfur batteries. J Power Sources 256:137–144

    Article  CAS  Google Scholar 

  • Li GC, Li GR, Ye SH, Gao XP (2012) A polyaniline-coated sulfur/carbon composite with an enhanced high-rate capability as a cathode material for lithium/sulfur batteries. Adv Energy Mater 2:1238–1245

    Article  CAS  Google Scholar 

  • Liang X, Zhang M, Kaiser MR, Gao X, Konstantinov K, Tandiono R, Wang Z, Liu HK, Dou SX, Wang J (2015) Split-half-tubular polypyrrole@sulfur@polypyrrole composite with a novel three-layer-3D structure as cathode for lithium/sulfur batteries. Nano Energy 11:587–599

    Article  CAS  Google Scholar 

  • Liang X, Wen Z, Liu Y, Zhang H, Jin J, Wu M, Wu X (2012) A composite of sulfur and polypyrrole-multi walled carbon combinatorial nanotube as cathode for Li/S battery. J Power Sources 206:409–413

    Article  CAS  Google Scholar 

  • Liang C, Dudney NJ, Howe JY (2009) Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery. Chem Mater 21:4724–4730

    Article  CAS  Google Scholar 

  • Lee DJ, Agostini M, Park JW, Sun YK, Jusef H, Scrosati B (2013) Progress in lithium-sulfur batteries: the effective role of a polysulfide-added electrolyte as buffer to prevent cathode dissolution. Chemsuschem 6:2245–2248

    Article  CAS  Google Scholar 

  • Miao LX, Wang WK, Wang MJ, Wang AB, Yuan KG, Yang YS (2013) A high sulfur content composite with core-shell structural as cathode material for Li-S batteries. J Mater Chem A 1:11659–11664

    Article  CAS  Google Scholar 

  • Ming J, Wu Y, Yu Y, Zhao F (2011) Steaming multiwalled carbon nanotubes via acid vapour for controllable nanoengineering and the fabrication of carbon nanoflutes. Chem Commun 47:5223–5225

    Article  CAS  Google Scholar 

  • Niu S, Lv W, Zhang C, Shi Y, Zhao J, Li B, Yang QH, Kang F (2015) One-pot self-assembly of graphene/carbon nanotube/sulfur hybrid with three dimensionally interconnected structure for lithium-sulfur batteries. J Power Sources 295:182–189

    Article  CAS  Google Scholar 

  • Peng XX, Lu YQ, Zhou LL, Sheng T, Shen SY, Liao HG, Huang L, Li JT, Sun SG (2016) Graphitized porous carbon materials with high sulfur loading for lithium-sulfur batteries. Nano Energy 32:503–510

    Article  Google Scholar 

  • Qu Y, Zhang Z, Zhang X, Ren G, Wang X, Lai Y, Liu Y, Li J (2014) Synthesis of hierarchical porous honeycomb carbon for lithium-sulfur battery cathode with high rate capability and long cycling stability. Electrochim Acta 137:439–446

    Article  CAS  Google Scholar 

  • Seh ZW, Sun YM, Zhang QF, Cui Y (2016) Designing high-energy lithium-sulfur batteries. Chem Soc Rev 45:5605–5634

    Article  CAS  Google Scholar 

  • Sun Y, Wang S, Cheng H, Dai Y, Yu J, Wu J (2015a) Synthesis of a ternary polyaniline@acetylene black-sulfur material by continuous two-step liquid phase for lithium sulfur batteries. Electrochim Acta 158:143–151

    Article  CAS  Google Scholar 

  • Sun Z, Xiao M, Wang S, Han D, Song S, Chen G, Meng Y (2015b) Specially designed carbon black nanoparticle-sulfur composite cathode materials with a novel structure for lithium-sulfur battery application. J Power Sources 285:478–484

    Article  CAS  Google Scholar 

  • Suo LM, Hu YS, LiH AM, Chen L (2013) A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat Commun 4:1481

    Article  Google Scholar 

  • Tao X, Wang J, Liu C, Wang H, Yao H, Zheng G, She ZW, Cai Q, Li W, Zhou G, Zu C, Cui Y (2016) Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design. Nat Commun 7:11203–11211

    Article  CAS  Google Scholar 

  • Wang J, Chen J, Konstantinov K, Zhao L, Ng SH, Wang GX, Guo ZP, Liu HK (2006) Sulphur-polypyrrole composite positive electrode materials for rechargeable lithium batteries. Electrochim Acta 51:4634–4638

    Article  CAS  Google Scholar 

  • Wang C, Wan W, Chen JT, Zhou HH, Zhang XX, Yuan LX, Huang YH (2013) Dual core-shell structured sulfur cathode composite synthesized by a one-pot route for lithium sulfur batteries. J Mater Chem A 1:1716–1723

    Article  CAS  Google Scholar 

  • Wang HL, Yang Y, Liang Y, Robinson JT, Li Y, Jackson A, Cui Y, Dai H (2011a) Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett 11:2644–2647

    Article  CAS  Google Scholar 

  • Wang JZ, Lu L, Choucair M, Stride JA, Xu X, Liu HK (2011b) Sulfur-graphene composite for rechargeable lithium batteries. J Power Sources 196:7030–7034

    Article  CAS  Google Scholar 

  • Wang WG, Wang X, Tian LY, Wang YL, Ye SH (2014) In situ sulfur deposition route to obtain sulfur-carbon composite cathodes for lithium-sulfur batteries. J Mater Chem A 2:4316–4323

    Article  CAS  Google Scholar 

  • Wang L, Yang Z, Nie H, Gu C, Hua W, Xu X, Chen X, Chen Y, Huang S (2016) A lightweight multifunctional interlayer of sulfur-nitrogen dual-doped graphene for ultrafast, long-life lithium-sulfur batteries. J Mater Chem A 4:15343–15352

    Article  CAS  Google Scholar 

  • Wu F, Chen J, Chen R, Wu S, Li L, Chen S, Zhao T (2011) Sulfur/polythiophene with a core/shell structure: synthesis and electrochemical properties of the cathode for rechargeable lithium batteries. J Phys Chem C 115:6057–6063

    Article  CAS  Google Scholar 

  • Wu H, Xia L, Ren J, Zhang Q, Xu C, Lin D (2017) A high-efficiency N/P co-doped graphene/CNT@porous carbon hybrid matrix as a cathode host for high performance lithium-sulfur batteries. J Mater Chem A 5:20458–20472

    Article  CAS  Google Scholar 

  • Wu F, Qian J, Chen R, Zhao T, Xu R, Ye Y, Li W, Li L, Lu J, Amine K (2015a) Sulfur cathode based on layered carbon matrix for high-performance Li-S batteries. Nano Energy 12:742–749

    Article  CAS  Google Scholar 

  • Wu F, Zhu Q, Chen R, Chen N, Chen Y, Ye Y, Qian J, Li L (2015b) Ionic liquid-based electrolyte with binary lithium salts for high performance lithium-sulfur batteries. J Power Sources 296:10–17

    Article  CAS  Google Scholar 

  • Xiao L, Cao Y, Xiao J, Schwenzer B, Engelhard MH, Saraf LV, Nie Z, Exarhos GJ, Liu J (2012) A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life. Adv Mater 24:1176–1181

    Article  CAS  Google Scholar 

  • Xue W, Yan QB, Xu G, Suo L, Chen Y, Wang C, Wang C, Li J (2017) Double-oxide sulfur host for advanced lithium-sulfur batteries. Nano Energy 38:12–18

    Article  CAS  Google Scholar 

  • Yang W, Yang W, Song AL, Gao LJ, Sun G, Shao GJ (2017) Pyrrole as a promising electrolyte additive to trap polysulfides for lithium-sulfur batteries. J Power Sources 348:175–182

    Article  CAS  Google Scholar 

  • Yang W, Yang W, Song A, Sun G, Shao G (2018) 3D interconnected porous carbon nanosheets/carbon nanotubes as a polysulfide reservoir for high performance lithium-sulfur batteries. Nanoscale 10:816–824

    Article  CAS  Google Scholar 

  • Yin L, Wang J, Yang J, Nuli Y (2011) A novel pyrolyzed polyacrylonitrile-sulfur@MWCNT composite cathode material for high-rate rechargeable lithium/sulfur batteries. J Mater Chem 21:6807–6810

    Article  CAS  Google Scholar 

  • Yuan G, Wang G, Wang H, Bai J (2015) A novel three-dimensional sulfur/graphene/carbon nanotube composite prepared by a hydrothermal co-assembling route as binder-free cathode for lithium-sulfur batteries. J Nanopart Res 17:36–46

    Article  Google Scholar 

  • Yuan L, Yuan H, Qiu X, Chen L, Zhu W (2009) Improvement of cycle property of sulfur-coated multi-walled carbon nanotubes composite cathode for lithium/sulfur batteries. J Power Sources 189:1141–1146

    Article  CAS  Google Scholar 

  • Zhang Z, Jing HK, Liu S, Li GR, Gao XP (2015) Encapsulating sulfur into a hybrid porous carbon/CNT substrate as a cathode for lithium-sulfur batteries. J Mater Chem A 3:6827–6834

    Article  CAS  Google Scholar 

  • Zhang Z, Lai Y, Zhang Z, Zhang K, Li J (2014) Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries. Electrochim Acta 129:55–61

    Article  Google Scholar 

  • Zhang B, Lai C, Zhou Z, Gao XP (2009) Preparation and electrochemical properties of sulfur-acrtylene black composites as cathode materials. Electrochim Acta 54:3708–3713

    Article  CAS  Google Scholar 

  • Zhang Z, Kong LL, Liu S, Li GR, Gao XP (2017) A high-efficiency sulfur/carbon composite based on 3D graphene nanosheet@carbon nanotube matrix as cathode for lithium-sulfur battery. Adv Energy Mater 7:1602543

    Article  Google Scholar 

Download references

Funding

This work was supported by the Shanxi Science and Technology Foundation Platform Construction Projects (Nos. 2015091011, 201805D121005), Jincheng Science and Technology Planning Project (No. 201501004-21), Fund for Shanxi Key Subject Construction, and the National Natural Science Foundation of China (No. 51805347).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingang Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Zhang, M., Yan, X. et al. A PEG-grafted carbon hybrid as sulfur host for high-performance lithium-sulfur batteries. J Nanopart Res 21, 70 (2019). https://doi.org/10.1007/s11051-019-4507-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-019-4507-4

Keywords

Navigation