Skip to main content
Log in

High Plastic Deformations and High Cooling Rates at the Interface of Explosion-Welded Materials

  • SIMULATION
  • Published:
Metal Science and Heat Treatment Aims and scope

Results of mathematical simulation of processes of plastic deformation, heating and cooling of steel plates during high-speed collision are presented. The method of hydrodynamics of smoothed particles is used to simulate the processes of plastic deformation and of the corresponding heating. The results of the simulation agree well with the experimental data and make it possible to explain the special features of structures observed in explosion-welded steel billets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. A. A. Deribas, The Physics of Hardening and Explosion Welding [in Russian], Nauka, Novosibirsk (1980), 224 p.

  2. I. D. Zakharenko, Explosion Welding of Metals [in Russian], Navuka i Tekhnika, Minsk (1990), 205 p.

  3. B. Crossland, Explosive Welding of Metals and Its Application, Oxford University Press, Oxford (1982), 233 p.

  4. A. A. A. Mousavi and S. T. S. Al-Hassani, “Numerical and experimental studies of the mechanism of wavy interface formations in explosive/impact welding,” J. Mech. Phys. Solids, 53(11), 2501 – 2508 (2005), doi: https://doi.org/10.1016/j.jmps.2005.06.001.

    Article  Google Scholar 

  5. A. Nassiri, G. Chini, and B. Kinsey, “Special stability analysis of emergent wave interfacial patterns in magnetic pulsed welding,” CIRP Annals – Manuf. Technol., 63(1), 245 – 248 (2014), doi: https://doi.org/10.1016/j.cirp. 2014.03.023.

  6. A. Ben-Artzy, A. Stern, N. Frange, and V. Shribman, “Interface phenomena in aluminum-magnesium magnetic pulse welding,” Sci. Technol. Weld. Join., 13(4), 402 – 408 (2008), doi: https://doi.org/10.1179/174329308X300136.

    Article  Google Scholar 

  7. I. A. Bataev, D. V. Lazurenko, S. Tanaka, et al., “High cooling rates and metastable phases at the interfaces of explosively welded materials,” Acta Mater., 135, 277 – 289 (2017).

    Article  Google Scholar 

  8. I. A. Bataev, T. S. Ogneva, A. A. Bataev, et al., “Explosively welded multilayer Ni – Al composites,” Mater. Design, 88, 1082 – 1087 (2015), doi: https://doi.org/10.1016/j.matdes.2015.09.103.

    Article  Google Scholar 

  9. S. P. Kiselev and V. I. Mali, “Numerical and experimental modeling of jet formation during a high-velocity oblique impact of metal plates,” Combust., Explos. Shock Waves, 48(2), 214 – 225 (2012), doi: https://doi.org/10.1134/S0010508212020116.

    Article  Google Scholar 

  10. A. Mori, S. Tanaka, and K. Hokamoto, “Optical observation of metal jet generated by high speed inclined collision,” in: Proc. SPIE – The International Society for Optical Engineering (2017).

  11. I. D. Zakharenko and T. M. Sobolenko, “Thermal effects in the weld zone in explosive welding,” Combust., Explos. Shock Waves, 7(3), 373 – 375 (1971), doi: https://doi.org/10.1007/BF00742828.

    Article  Google Scholar 

  12. I. D. Zakharenko, “Thermal state of the weld zone in explosive welding,” Combust., Explos. Shock Waves, 7(2), 229 – 231 (1971), doi: https://doi.org/10.1007/BF00748979.

    Article  Google Scholar 

  13. I. A. Bataev, “Structure of explosively welded materials: experimental study and numerical simulation,” Metal Working Mater. Sci., 77(4), 55 – 67, doi: https://doi.org/10.17212/1994-6309-2017-4-55-67.

  14. A. Nassiri, B. Kinsey, and G. Chini, “Shear instability of plastically-deforming metals in high-velocity impact welding,” J. Mech. Phys. Solids, 95, 351 – 373 (2016), doi: https://doi.org/10.1016/j.jmps.2016.06.002.

    Article  Google Scholar 

  15. X. J. Li, F. Mo, X. H. Wang, et al., “Numerical study on mechanism of explosive welding,” Sci. Technol. Weld. Join., 17(1), 36 – 41 (2012), doi: https://doi.org/10.1179/1362171811Y.0000000071.

    Article  Google Scholar 

  16. M. B. Liu, Z. L. Zhang, and D. L. Feng, “A density-adaptive SPH method with kernel gradient correction for modeling explosive welding,” Comput. Mech., 60(3), 513 – 529 (2017), doi: https://doi.org/10.1007/s00466-017-1420-5.

    Article  Google Scholar 

  17. M. A. Meyers, Dynamic Behavior of Materials, John Wiley & Sons, New York (1994), 668 p.

  18. G. R. Johnson, “A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures,” in: Proc. 7th Int. Symp. on Ballistics, The Hague, Netherlands (1983), pp. 541 – 547.

  19. Q. Zhou, J. Feng, and P. Chen, “Numerical and experimental studies on the explosive welding of tungsten foil to copper,” Materials, 10(9) (2017), doi: https://doi.org/10.3390/ma10090984.

  20. A. A. Popov and L. E. Popova, Handbook of Heat Treatment Specialist: Isothermal and Thermokinetic Diagrams of Decomposition of Supercooled Austenite [in Russian], Mashgiz, Moscow (1961).

    Google Scholar 

  21. I. A. Bataev, A. A. Bataev, V. I. Mali, et al., “Formation and structure of vortex zones arising upon explosion welding of carbon steels,” Phys. Met. Metallogr., 113(3), 233 – 240 (2012), doi: https://doi.org/10.1134/S0031918X12030039.

    Article  Google Scholar 

  22. I. A. Bataev, D. V. Lazurenko, Yu. N. Malyutina, et al., “Super-high cooling rates at the interface of explosion-welded materials and their effect on formation of structure in mixing zones,” Fiz. Goren. Vzryva, 54(2), 122 – 130 (2018), doi: https://doi.org/10.15372/FGV20180213.

    Google Scholar 

  23. W. D. Liu, K. X. Liu, Q. Y. Chen, et al., “Metallic glass coating on metals by adjusted explosive welding technique,” Appl. Surf. Sci., 255(23), 9343 – 9347 (2009), doi: https://doi.org/10.1016/j.apsusc.2009.07.033.

    Article  Google Scholar 

Download references

The study has been financed by a grant of the Russian Scientific Foundation (Project No. 17-72-10226).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Bataev.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 10, pp. 60 – 65, October, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bataev, I.A., Ivanov, I.V., Malyutina, Y.N. et al. High Plastic Deformations and High Cooling Rates at the Interface of Explosion-Welded Materials. Met Sci Heat Treat 60, 674–679 (2019). https://doi.org/10.1007/s11041-019-00336-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-019-00336-y

Key words

Navigation