Skip to main content

Advertisement

Log in

The discovery approaches and detection methods of microRNAs

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are small, highly conserved, non-coding RNAs that regulate gene expression of target mRNAs through cleavage or translational inhibition. Computer-based approaches for miRNA gene identification are being considered as indispensable in miRNAs research. Similarly, experimental approaches for detection of miRNAs are crucial to the testing and validating of computational algorithms. The detection of miRNAs in tissues or cells can supply valuable information for investigating the biological function of these molecules. Selective and highly sensitive detection methods will pave the way for extended understanding of miRNA function within organisms. In this review, we summarize the various computational methods for identification of miRNAs as well as the methodologies that have been developed to detection miRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Huang JC, Babak T, Corson TW, Chua G, Khan S, Gallie BL, Hughes TR, Blencowe BJ, Frey BJ, Morris QD (2007) Using expression profiling data to identify human microRNA targets. Nat Methods 4:1045–1049

    Article  PubMed  CAS  Google Scholar 

  2. Carrington JC, Ambros V (2003) Role of microRNAs in plant and animal development. Science 301:336–338

    Article  PubMed  CAS  Google Scholar 

  3. Pasquinelli AE, Hunter S, Bracht J (2005) MicroRNAs: a developing story. Curr Opin Genet Dev 15:200–205

    Article  PubMed  CAS  Google Scholar 

  4. Williams AE (2008) Functional aspects of animal microRNAs. Cell Mol Life Sci 65:545–562

    Article  PubMed  CAS  Google Scholar 

  5. Huang Y, Shen XJ, Zou Q, Wang SP, Tang SM, Zhang GZ (2010) Biological functions of microRNAs: a review. J Physiol Biochem. doi:10.1007/s13105-010-0050-6

    PubMed  Google Scholar 

  6. Kozomara A, Griffiths-Jones S (2010) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. doi:10.1093/nar/gkq1027

    PubMed  Google Scholar 

  7. Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS (2003) MicroRNA targets in Drosophila. Genome Biol 5:R1

    Article  PubMed  Google Scholar 

  8. Liu B, Li J, Tsykin A (2009) Discovery of functional miRNA-mRNA regulatory modules with computational methods. J Biomed Inform 42:685–691

    Article  PubMed  CAS  Google Scholar 

  9. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  PubMed  CAS  Google Scholar 

  10. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906

    Article  PubMed  CAS  Google Scholar 

  11. Lin SY, Johnson SM, Abraham M, Vella MC, Pasquinelli A, Gamberi C, Gottlieb E, Slack FJ (2003) The C elegans hunchback homolog, hbl-1, controls temporal patterning and is a probable microRNA target. Dev Cell 4:639–650

    Article  PubMed  CAS  Google Scholar 

  12. Abrahante JE, Daul AL, Li M, Volk ML, Tennessen JM, Miller EA, Rougvie AE (2003) The Caenorhabditis elegans hunchback-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs. Dev Cell 4:625–637

    Article  PubMed  CAS  Google Scholar 

  13. Vella MC, Choi EY, Lin SY, Reinert K, Slack FJ (2004) The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3′UTR. Genes Dev 18:132–137

    Article  PubMed  CAS  Google Scholar 

  14. Slack FJ, Basson M, Liu Z, Ambros V, Horvitz HR, Ruvkun G (2000) The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol Cell 5:659–669

    Article  PubMed  CAS  Google Scholar 

  15. Peters JL, Cnudde F, Gerats T (2003) Forward genetics and map-based cloning approaches. Trends Plant Sci 8:484–491

    Article  PubMed  CAS  Google Scholar 

  16. Ambros V, Lee RC (2004) Identification of microRNAs and other tiny noncoding RNAs by cDNA cloning. Methods Mol Biol 265:131–138

    PubMed  CAS  Google Scholar 

  17. Xu G, Zhang Y, Jia H, Li J, Liu X, Engelhardt JF, Wang Y (2009) Cloning and identification of microRNAs in bovine alveolar macrophages. Mol Cell Biochem 332:9–16

    Article  PubMed  CAS  Google Scholar 

  18. Long JE, Chen HX (2009) Identification and characteristics of cattle microRNAs by homology searching and small RNA cloning. Biochem Genet 47:329–343

    Article  PubMed  CAS  Google Scholar 

  19. He X, Zhang Q, Liu Y, Pan X (2007) Cloning and identification of novel microRNAs from rat hippocampus. Acta Biochim Biophys Sin (Shanghai) 39:708–714

    Article  CAS  Google Scholar 

  20. Pfeffer S, Zavolan M, Grasser FA, Chien M, Russo JJ, Ju J, John B, Enright AJ, Marks D, Sander C, Tuschl T (2004) Identification of virus-encoded microRNAs. Science 304:734–736

    Article  PubMed  CAS  Google Scholar 

  21. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12:735–739

    Article  PubMed  CAS  Google Scholar 

  22. Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E, Sharon E, Spector Y, Bentwich Z (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37:766–770

    Article  PubMed  CAS  Google Scholar 

  23. Yu X, Zhou Q, Li SC, Luo Q, Cai Y, Lin WC, Chen H, Yang Y, Hu S, Yu J (2008) The silkworm (Bombyx mori) microRNAs and their expressions in multiple developmental stages. PLoS One 3:e2997

    Article  PubMed  Google Scholar 

  24. Pfeffer S, Lagos-Quintana M, Tuschl T (2005) Cloning of small RNA molecules. Curr Protoc Mol Biol, Chapter 26: Unit 26.4

  25. Friedlander MR, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S, Rajewsky N (2008) Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 26:407–415

    Article  PubMed  Google Scholar 

  26. Git A, Dvinge H, Salmon-Divon M, Osborne M, Kutter C, Hadfield J, Bertone P, Caldas C (2010) Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA 16:991–1006

    Article  PubMed  CAS  Google Scholar 

  27. Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics 92:255–264

    Article  PubMed  CAS  Google Scholar 

  28. Olson AJ, Brennecke J, Aravin AA, Hannon GJ, Sachidanandam R (2008) Analysis of large-scale sequencing of small RNAs. Pac Symp Biocomput 13:126–136

    Google Scholar 

  29. Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46

    Article  PubMed  CAS  Google Scholar 

  30. Cahill MJ, Koser CU, Ross NE, Archer JA (2010) Read length and repeat resolution: exploring prokaryote genomes using next-generation sequencing technologies. PLoS One 5:e11518

    Article  PubMed  Google Scholar 

  31. Morin RD, O’Connor MD, Griffith M, Kuchenbauer F, Delaney A, Prabhu AL, Zhao Y, McDonald H, Zeng T, Hirst M, Eaves CJ, Marra MA (2008) Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res 18:610–621

    Article  PubMed  CAS  Google Scholar 

  32. Kawaji H, Hayashizaki Y (2008) Exploration of small RNAs. PLoS Genet 4:e22

    Article  PubMed  Google Scholar 

  33. Stark A, Kheradpour P, Parts L, Brennecke J, Hodges E, Hannon GJ, Kellis M (2007) Systematic discovery and characterization of fly microRNAs using 12 Drosophila genomes. Genome Res 17:1865–1879

    Article  PubMed  CAS  Google Scholar 

  34. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell HR, Boutell JM, Bryant J, Carter RJ, Keira Cheetham R, Cox AJ, Ellis DJ (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53–59

    Article  PubMed  CAS  Google Scholar 

  35. Valouev A, Ichikawa J, Tonthat T, Stuart J, Ranade S, Peckham H, Zeng K, Malek JA, Costa G, McKernan K, Sidow A, Fire A, Johnson SM (2008) A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. Genome Res 18:1051–1063

    Article  PubMed  CAS  Google Scholar 

  36. Petrosino JF, Highlander S, Luna RA, Gibbs RA, Versalovic J (2009) Metagenomic pyrosequencing and microbial identification. Clin Chem 55:856–866

    Article  PubMed  CAS  Google Scholar 

  37. Doran J, Strauss WM (2007) Bio-informatic trends for the determination of miRNA-target interactions in mammals. DNA Cell Biol 26:353–360

    Article  PubMed  CAS  Google Scholar 

  38. Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP (2003) Vertebrate microRNA genes. Science 299:1540

    Article  PubMed  CAS  Google Scholar 

  39. Schuster P, Fontana W, Stadler PF, Hofacker IL (1994) From sequences to shapes and back: a case study in RNA secondary structures. Proc Biol Sci 255:279–284

    Article  PubMed  CAS  Google Scholar 

  40. Ohler U, Yekta S, Lim LP, Bartel DP, Burge CB (2004) Patterns of flanking sequence conservation and a characteristic upstream motif for microRNA gene identification. RNA 10:1309–1322

    Article  PubMed  CAS  Google Scholar 

  41. Mendes ND, Freitas AT, Sagot MF (2009) Current tools for the identification of miRNA genes and their targets. Nucleic Acids Res 37:2419–2433

    Article  PubMed  CAS  Google Scholar 

  42. Lai EC, Tomancak P, Williams RW, Rubin GM (2003) Computational identification of Drosophila microRNA genes. Genome Biol 4:R42

    Article  PubMed  Google Scholar 

  43. Ruby JG, Stark A, Johnston WK, Kellis M, Bartel DP, Lai EC (2007) Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. Genome Res 17:1850–1864

    Article  PubMed  CAS  Google Scholar 

  44. Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, Cuppen E (2005) Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120:21–24

    Article  PubMed  CAS  Google Scholar 

  45. Xu Y, Zhou X, Zhang W (2008) MicroRNA prediction with a novel ranking algorithm based on random walks. Bioinformatics 24:i50–i58

    Article  PubMed  CAS  Google Scholar 

  46. Hackenberg M, Sturm M, Langenberger D, Falcon-Perez JM, Aransay AM (2009) miRanalyzer: a microRNA detection and analysis tool for next-generation sequencing experiments. Nucleic Acids Res 37:W68–W76

    Article  PubMed  CAS  Google Scholar 

  47. Nam JW, Shin KR, Han J, Lee Y, Kim VN, Zhang BT (2005) Human microRNA prediction through a probabilistic co-learning model of sequence and structure. Nucleic Acids Res 33:3570–3581

    Article  PubMed  CAS  Google Scholar 

  48. Sewer A, Paul N, Landgraf P, Aravin A, Pfeffer S, Brownstein MJ, Tuschl T, van Nimwegen E, Zavolan M (2005) Identification of clustered microRNAs using an ab initio prediction method. BMC Bioinformatics 6:267

    Article  PubMed  Google Scholar 

  49. Xue C, Li F, He T, Liu GP, Li Y, Zhang X (2005) Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine. BMC Bioinformatics 6:310

    Article  PubMed  Google Scholar 

  50. Grundhoff A, Sullivan CS, Ganem D (2006) A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-herpesviruses. RNA 12:733–750

    Article  PubMed  CAS  Google Scholar 

  51. Hertel J, Stadler PF (2006) Hairpins in a Haystack: recognizing microRNA precursors in comparative genomics data. Bioinformatics 22:e197–e202

    Article  PubMed  CAS  Google Scholar 

  52. Sheng Y, Engstrom PG, Lenhard B (2007) Mammalian microRNA prediction through a support vector machine model of sequence and structure. PLoS One 2:e946

    Article  PubMed  Google Scholar 

  53. Yousef M, Nebozhyn M, Shatkay H, Kanterakis S, Showe LC, Showe MK (2006) Combining multi-species genomic data for microRNA identification using a Naive Bayes classifier. Bioinformatics 22:1325–1334

    Article  PubMed  CAS  Google Scholar 

  54. Yousef M, Jung S, Showe LC, Showe MK (2008) Learning from positive examples when the negative class is undetermined–microRNA gene identification. Algorithms Mol Biol 3:2

    Article  PubMed  Google Scholar 

  55. Jiang P, Wu H, Wang W, Ma W, Sun X, Lu Z (2007) MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Nucleic Acids Res 35:W339–W344

    Article  PubMed  Google Scholar 

  56. Helvik SA, Snove O Jr, Saetrom P (2007) Reliable prediction of Drosha processing sites improves microRNA gene prediction. Bioinformatics 23:142–149

    Article  PubMed  CAS  Google Scholar 

  57. Adai A, Johnson C, Mlotshwa S, Archer-Evans S, Manocha V, Vance V, Sundaresan V (2005) Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res 15:78–91

    Article  PubMed  CAS  Google Scholar 

  58. Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858–862

    Article  PubMed  CAS  Google Scholar 

  59. Pall GS, Codony-Servat C, Byrne J, Ritchie L, Hamilton A (2007) Carbodiimide-mediated cross-linking of RNA to nylon membranes improves the detection of siRNA, miRNA and piRNA by northern blot. Nucleic Acids Res 35:e60

    Article  PubMed  Google Scholar 

  60. Varallyay E, Burgyan J, Havelda Z (2007) Detection of microRNAs by Northern blot analyses using LNA probes. Methods 43:140–145

    Article  PubMed  CAS  Google Scholar 

  61. Liu CG, Calin GA, Meloon B, Gamliel N, Sevignani C, Ferracin M, Dumitru CD, Shimizu M, Zupo S, Dono M, Alder H, Bullrich F, Negrini M, Croce CM (2004) An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci USA 101:9740–9774

    Article  PubMed  CAS  Google Scholar 

  62. Wang X (2006) Systematic identification of microRNA functions by combining target prediction and expression profiling. Nucleic Acids Res 34:1646–1652

    Article  PubMed  CAS  Google Scholar 

  63. Wienholds E, Kloosterman WP, Miska E, Alvarez-Saavedra E, Berezikov E, de Bruijn E, Horvitz HR, Kauppinen S, Plasterk RH (2005) MicroRNA expression in zebrafish embryonic development. Science 309:310–311

    Article  PubMed  CAS  Google Scholar 

  64. Kloosterman WP, Wienholds E, de Bruijn E, Kauppinen S, Plasterk RH (2006) In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nat Methods 3:27–29

    Article  PubMed  CAS  Google Scholar 

  65. Kloosterman WP, Steiner FA, Berezikov E, de Bruijn E, van de Belt J, Verheul M, Cuppen E, Plasterk RH (2006) Cloning and expression of new microRNAs from zebrafish. Nucleic Acids Res 34:2558–2569

    Article  PubMed  CAS  Google Scholar 

  66. Nelson PT, Baldwin DA, Kloosterman WP, Kauppinen S, Plasterk RH, Mourelatos Z (2006) RAKE and LNA-ISH reveal microRNA expression and localization in archival human brain. RNA 12:187–191

    Article  PubMed  CAS  Google Scholar 

  67. Deo M, Yu JY, Chung KH, Tippens M, Turner DL (2006) Detection of mammalian microRNA expression by in situ hybridization with RNA oligonucleotides. Dev Dyn 235:2538–2548

    Article  PubMed  CAS  Google Scholar 

  68. Berezikov E, Cuppen E, Plasterk RH (2006) Approaches to microRNA discovery. Nat Genet 38:S2–S7

    Article  PubMed  CAS  Google Scholar 

  69. Allawi HT, Dahlberg JE, Olson S, Lund E, Olson M, Ma WP, Takova T, Neri BP, Lyamichev VI (2004) Quantitation of microRNAs using a modified Invader assay. RNA 10:1153–1161

    Article  PubMed  CAS  Google Scholar 

  70. Raymond CK, Roberts BS, Garrett-Engele P, Lim LP, Johnson JM (2005) Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and short-interfering RNAs. RNA 11:1737–1744

    Article  PubMed  CAS  Google Scholar 

  71. Schmittgen TD, Lee EJ, Jiang J, Sarkar A, Yang L, Elton TS, Chen C (2008) Real-time PCR quantification of precursor and mature microRNA. Methods 44:31–38

    Article  PubMed  CAS  Google Scholar 

  72. Shi R, Chiang VL (2005) Facile means for quantifying microRNA expression by real-time PCR. Biotechniques 39:519–525

    Article  PubMed  CAS  Google Scholar 

  73. Jonstrup SP, Koch J, Kjems J (2006) A microRNA detection system based on padlock probes and rolling circle amplification. RNA 12:1747–1752

    Article  PubMed  CAS  Google Scholar 

  74. Maroney PA, Chamnongpol S, Souret F, Nilsen TW (2008) Direct detection of small RNAs using splinted ligation. Nat Protoc 3:279–287

    Article  PubMed  CAS  Google Scholar 

  75. Maroney PA, Chamnongpol S, Souret F, Nilsen TW (2007) A rapid, quantitative assay for direct detection of microRNAs and other small RNAs using splinted ligation. RNA 13:930–936

    Article  PubMed  CAS  Google Scholar 

  76. Li W, Ruan K (2009) MicroRNA detection by microarray. Anal Bioanal Chem 394:1117–1124

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was partly supported by research grants from the National Basic Research 973 Program (2005CB121004); the National High Tech Development Project of China, the 863 Program (2006AA10A119); Innovation Foundation for Graduate Students of Jiangsu Province and the Natural Science Foundation of China (61001013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Jia Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y., Zou, Q., Wang, S.P. et al. The discovery approaches and detection methods of microRNAs. Mol Biol Rep 38, 4125–4135 (2011). https://doi.org/10.1007/s11033-010-0532-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0532-1

Keywords

Navigation