Skip to main content

Advertisement

Log in

Synthesis and plant growth regulatory activities of 2′,3′-PhABA and iso-2′,3′-PhABA esters

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Methyl and phenyl esters of 2′,3′-PhABA and iso-2′,3′-PhABA were prepared for the biological investigation and development of practical applications. These esters exhibited excellent activity in most plant growth inhibitory assays. And, three esters were more efficient than ABA in stomatal closure. The 2′,3′-PhABA analogs and their methyl esters have good stability in hydrolysis assay, and the different lipid solubility and permeability of different esters may be one of the origins of their active selectivity for different plants and physiological processes. Furthermore, in the study of drought tolerance, all four esters had comparable activity to ABA. These results suggest that these esters were potent plant growth regulator (PGR) candidates for anti-drought. The finding that different esters have different selective bioactivity and biophysical properties indicates that these esters not only function as ABA-like PGRs but also have the possibility as potential selective pro-hormone.

Graphical abstract

2′,3′-BenzoABA esters as PGR candidates with prolonged and selective bioactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zeevaart JAD (1988) Metabolism and physiology of abscisic acid. Annu Rev Plant Physiol Plant Mol Biol 39:439–473

    Article  CAS  Google Scholar 

  2. Davies WJ, Zhang J (1991) Root signals and the regulation of growth and development of plants in drying soil. Annu Rev Plant Physiol Plant Mol Biol 42(1):55–76. https://doi.org/10.1146/annurev.pp.42.060191.000415

    Article  CAS  Google Scholar 

  3. Leung J, Giraudat J (1998) Abscisic acid signal transduction. Annu Rev Plant Physiol Plant Mol Biol 49:199–222. https://doi.org/10.1146/annurev.arplant.49.1.199

    Article  CAS  PubMed  Google Scholar 

  4. Finkelstein R (2013) Abscisic acid synthesis and response. Arabidopsis Book 11:e0166. https://doi.org/10.1199/tab.0166

    Article  PubMed  PubMed Central  Google Scholar 

  5. Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19(6):371–379. https://doi.org/10.1016/j.tplants.2014.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Horton RF (1971) Stomatal opening: the role of abscisic acid. Can J Bot 49(4):583–585. https://doi.org/10.1139/b71-092

    Article  CAS  Google Scholar 

  7. Chen THH, Gusta LV (1983) Abscisic acid-induced freezing resistance in cultured plant cells. Plant Physiol 73(1):71–75. https://doi.org/10.1104/pp.73.1.71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zeevaart JAD, Hooykaas PJJ, Hall MA, Libbenga KR (1999) Abscisic acid metabolism and its regulation. In: Hooykaas PJJ, Hall MA, Libbenga KR (eds) Biochemistry and molecular biology of plant hormones. Elsevier Science, New York, pp 189–207. https://doi.org/10.1016/s0167-7306(08)60488-3

    Chapter  Google Scholar 

  9. Chiwocha SDS, Abrams SR, Ambrose SJ, Cutler AJ, Loewen M, Ross ARS, Kermode AR (2003) A method for profiling classes of plant hormones and their metabolites using liquid chromatography-electrospray ionization tandem mass spectrometry: an analysis of hormone regulation of thermodormancy of lettuce (Lactuca sativa L.) seeds. Plant J 35(3):405–417. https://doi.org/10.1046/j.1365-313x.2003.01800.x

    Article  CAS  PubMed  Google Scholar 

  10. Oritani T, Kiyota H (2003) Biosynthesis and metabolism of abscisic acid and related compounds. Nat Prod Rep 20(4):414–425. https://doi.org/10.1039/b109859b

    Article  CAS  PubMed  Google Scholar 

  11. Zhou R, Cutler AJ, Ambrose SJ, Galka MM, Nelson KM, Squires TM, Loewen MK, Jadhav AS, Ross AR, Taylor DC, Abrams SR (2004) A new abscisic Acid catabolic pathway. Plant Physiol 134(1):361–369. https://doi.org/10.1104/pp.103.030734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zaharia LI, Walker-Simmon MK, Rodríguez CN, Abrams SR (2005) Chemistry of abscisic acid, abscisic acid catabolites and analogs. J Plant Growth Regul 24(4):274–284. https://doi.org/10.1007/s00344-005-0066-2

    Article  CAS  Google Scholar 

  13. Cornforth JW, Milborrow BV, Ryback G (1965) Synthesis of (±)-Abscisin II. Nature 206:715

    Article  CAS  Google Scholar 

  14. Cao M, Liu X, Zhang Y, Xue X, Zhou XE, Melcher K, Gao P, Wang F, Zeng L, Zhao Y, Zhao Y, Deng P, Zhong D, Zhu JK, Xu HE, Xu Y (2013) An ABA-mimicking ligand that reduces water loss and promotes drought resistance in plants. Cell Res 23(8):1043–1054. https://doi.org/10.1038/cr.2013.95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee KH, Piao HL, Kim HY, Choi SM, Jiang F, Hartung W, Hwang I, Kwak JM, Lee IJ, Hwang I (2006) Activation of glucosidase via stress-induced polymerization rapidly increases active pools of Abscisic acid. Cell 126(6):1109–1120. https://doi.org/10.1016/j.cell.2006.07.034

    Article  CAS  PubMed  Google Scholar 

  16. Xu ZY, Lee KH, Dong T, Jeong JC, Jin JB, Kanno Y, Kim DH, Kim SY, Seo M, Bressan RA, Yun DJ, Hwang I (2012) A vacuolar beta-glucosidase homolog that possesses glucose-conjugated Abscisic acid hydrolyzing activity plays an important role in osmotic stress responses in Arabidopsis. Plant Cell 24(5):2184–2199. https://doi.org/10.1105/tpc.112.095935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wan C, Zhang Y, Yang D, Han X, Li X, Hong L, Xiao Y, Qin Z (2015) Synthesis and biological activity of abscisic acid esters. Phytochem Lett 12:267–272. https://doi.org/10.1016/j.phytol.2015.04.015

    Article  CAS  Google Scholar 

  18. Shingo M, Makoto S, Toru Y (1993) Abscisic acid analogue and plant growth-regulating agent. JP 05-001001. https://www19.j-platpat.inpit.go.jp/PA1/cgi-bin/PA1DETAIL?MaxCount=1000&PageCount=1000&SearchType=0&TempName=w-Lakia&MaxPage=1&DispPage=1+1000&HitCount=36&ResultId=I00419005802&CookieId=2&DetailPage=25&Language=ENG&Reserve1=DetailPaging&Reserve2=hh9II7f5d_j5dDc3cs4S&Reserve3=

  19. Ward JL, Beale MH (1995) Caged plant hormones. Phytochemistry 38:811–816

    Article  CAS  Google Scholar 

  20. Jones RJ, Mansfield TA (1971) Antitranspiration activity of the methyl and phenyl esters of Abscisic acid. Nature 231:331–332

    Article  CAS  Google Scholar 

  21. Frackenpohl J, Bojack G, Baltz R, Bickers U, Busch M, Dittgen J, Franke J, Freigang J, Grill E, Gonzalez S, Helmke H, Hills MJ, Hohmann S, von Koskull-Döring P, Kleemann J, Lange G, Lehr S, Schmutzler D, Schulz A, Walther K, Willms L, Wunschel C (2018) Potent analogues of abscisic acid-identifying cyano-cyclopropyl moieties as promising replacements for the cyclohexenone headgroup. Eur J Org Chem 12:1416–1425. https://doi.org/10.1002/ejoc.201701769

    Article  CAS  Google Scholar 

  22. Frackenpohl J, Grill E, Bojack G, Baltz R, Busch M, Dittgen J, Franke J, Freigang J, Gonzalez S, Heinemann I, Helmke H, Hills M, Hohmann S, von Koskull-Döring P, Kleemann J, Lange G, Lehr S, Müller T, Peschel E, Poree F, Schmutzler D, Schulz A, Willms L, Wunschel C (2018) Insights into the in vitro and in vivo SAR of abscisic acid-exploring unprecedented variations of the side chain via cross-coupling-mediated syntheses. Eur J Org Chem 12:1403–1415. https://doi.org/10.1002/ejoc.201701687

    Article  CAS  Google Scholar 

  23. Balko TW, Fields SC, Webster JD (1999) Total synthesis of (±)-8′-trifluoromethyl abscisic acid. Tetrahedron Lett 40(35):6347–6351. https://doi.org/10.1016/s0040-4039(99)01206-x

    Article  CAS  Google Scholar 

  24. Arai S, Todoroki Y, Ibaraki S, Naoe Y, Hirai N, Ohigashi H (1999) Synthesis and biological activity of 3′-chloro, -bromo, and -iodoabscisic acids, and biological activity of 3′-fluoro-8′-hydroxyabscisic acid. Phytochemistry 52(7):1185–1193. https://doi.org/10.1016/s0031-9422(99)00444-6

    Article  CAS  Google Scholar 

  25. Ohkuma K (1965) Synthesis of some analogs of Abscisin II. Agr Biol Chem 30(5):434–437. https://doi.org/10.1080/00021369.1966.10858620

    Article  Google Scholar 

  26. Lei B, Abrams SR, Ewan B, Gusta LV (1994) Achiral cyclohexadienone analogues of abscisic acid: synthesis and biological activity. Phytochemistry 37(2):289–296. https://doi.org/10.1016/0031-9422(94)85049-6

    Article  CAS  Google Scholar 

  27. Todoroki Y, Nakano S, Hirai N, Mitsui T, Ohigashi H (1997) Synthesis, biological activity, and metabolism of 8′,8′,8′-trideuteroabscisic acid. Biosci Biotech Biochem 61(11):1872–1876. https://doi.org/10.1271/bbb.61.1872

    Article  CAS  Google Scholar 

  28. Todoroki Y, Hirai N, Koshimizu K (1995) 8′,8′-Difluoro- and 8′,8′,8′-trifluoroabscisic acids as highly potent, long-lasting analogues of abscisic acid. Phytochemistry 38(3):561–568. https://doi.org/10.1016/0031-9422(94)00693-n

    Article  CAS  Google Scholar 

  29. Todoroki Y, Hirai N, Koshimizu K (1995) Synthesis and biological activity of 1′-deoxy-1′-fluoro- and 8′-fluoroabscisic acids. Phytochemistry 40(3):633–641. https://doi.org/10.1016/0031-9422(95)00230-5

    Article  CAS  Google Scholar 

  30. Todoroki Y, Hirai N, Koshimizu K (1994) 8′- and 9′-Methoxyabscisic acids as antimetabolic analogs of abscisic acid. Biosci Biotechnol Biochem 58(4):707–715. https://doi.org/10.1271/bbb.58.707

    Article  CAS  Google Scholar 

  31. Rose PA, Cutler AJ, Irvine NM, Shaw AC, Squires TM, Loewen MK, Abrams SR (1997) 8′-Acetylene ABA: an irreversible inhibitor of ABA 8′-hydroxylase. Bioorg Med Chem Lett 7(19):2543–2546

    Article  CAS  Google Scholar 

  32. Abrams SR, Rose PA, Cutler AJ, Trvine NM, Shaw AC, Squires TM, Loewen MK (1997) 8′-Methylene abscisic acid. An effective and persistent analog of Abscisic acid. Plant Physiol 114:89–97. https://doi.org/10.1104/pp.114.1.89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nyangulu JM, Galka MM, Jadhav A, Gai Y, Graham CM, Nelson KM, Cutler AJ, Taylor DC, Banowetz GM, Abrams SR (2005) An affinity probe for isolation of Abscisic acid-binding proteins. J Am Chem Soc 127(6):1662–1664. https://doi.org/10.1021/ja0429059

    Article  CAS  PubMed  Google Scholar 

  34. Benson CL, Kepka M, Wunschel C, Rajagopalan N, Nelson KM, Christmann A, Abrams SR, Grill E, Loewen MC (2015) Abscisic acid analogs as chemical probes for dissection of abscisic acid responses in Arabidopsis thaliana. Phytochemistry 113:96–107. https://doi.org/10.1016/j.phytochem.2014.03.017

    Article  CAS  PubMed  Google Scholar 

  35. Takeuchi J, Ohnishi T, Okamoto M, Todoroki Y (2015) Conformationally restricted 3′-modified ABA analogs for controlling ABA receptors. Org Biomol Chem 13(14):4278–4288. https://doi.org/10.1039/c4ob02662d

    Article  CAS  PubMed  Google Scholar 

  36. Rajagopalan N, Nelson KM, Douglas AF, Jheengut V, Alarcon IQ, McKenna SA, Surpin M, Loewen MC, Abrams SR (2016) Abscisic acid analogues that act as universal or selective antagonists of phytohormone receptors. Biochemistry 55(36):5155–5164. https://doi.org/10.1021/acs.biochem.6b00605

    Article  CAS  PubMed  Google Scholar 

  37. Han X, Wan C, Li X, Li H, Yang D, Du S, Xiao Y, Qin Z (2015) Synthesis and bioactivity of 2′,3′-benzoabscisic acid analogs. Bioorg Med Chem Lett 25(11):2438–2441. https://doi.org/10.1016/j.bmcl.2015.03.071

    Article  CAS  PubMed  Google Scholar 

  38. Wan C, Wang M, Yang D, Han X, Che C, Ding S, Xiao Y, Qin Z (2017) Synthesis and biological activity of 2′,3′-iso-aryl-abscisic acid analogs. Molecules 22(12):2229. https://doi.org/10.3390/molecules22122229

    Article  PubMed Central  Google Scholar 

  39. Neises B, Steglich W (1978) Simple method for the esterification of carboxylic acids. Angew Chem Int Ed Engl 17(7):522–524. https://doi.org/10.1002/anie.197805221

    Article  Google Scholar 

  40. Han X, Jiang L, Che C, Wan C, Lu H, Xiao Y, Xu Y, Chen Z, Qin Z (2017) Design and functional characterization of a novel abscisic acid analog. Sci Rep 7:43863. https://doi.org/10.1038/srep43863

    Article  PubMed  PubMed Central  Google Scholar 

  41. Han X, Zhou Z, Wan C, Xiao Y, Qin Z (2013) Co(acac)2-catalyzed allylic and benzylic oxidation by tert-butyl hydroperoxide. Synthesis 45(05):615–620. https://doi.org/10.1055/s-0032-1318172

    Article  CAS  Google Scholar 

  42. Han X, Wan C, Yang D, Yuan X, Du S, Xiao Y, Qin Z (2013) A highly efficient regioselective addition of acetylides to enediones based on steric effects. Molecules 18(9):10776–10788. https://doi.org/10.3390/molecules180910776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ertl P, Rohde B, Selzer P (2000) Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J Med Chem 43(20):3714–3717. https://doi.org/10.1021/jm000942e

    Article  CAS  PubMed  Google Scholar 

  44. Merlot S, Mustilli A-C, Genty B, North H, Lefebvre V, Sotta B, Vavasseur A, Giraudat J (2002) Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation. Plant J 30(5):601–609. https://doi.org/10.1046/j.1365-313X.2002.01322.x

    Article  CAS  PubMed  Google Scholar 

  45. Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273. https://doi.org/10.1146/annurev.arplant.53.091401.143329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803. https://doi.org/10.1146/annurev.arplant.57.032905.105444

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported financially by the National Natural Science Foundation of China (No. 21572265).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaohai Qin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, C., Li, J., Zhao, F. et al. Synthesis and plant growth regulatory activities of 2′,3′-PhABA and iso-2′,3′-PhABA esters. Mol Divers 24, 119–130 (2020). https://doi.org/10.1007/s11030-019-09931-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-019-09931-w

Keywords

Navigation