Skip to main content
Log in

Purification, Characterization and Antibacterial Properties of Peptide from Marine Ascidian Didemnum sp.

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Marine ecosystems are unique and a largely diverse chest of natural resources which are still to be explored for new marine species. They are still unexplored for their pharmacological properties. Ascidians or sea squirts are invertebrate and fruitful candidate of a wide variety of biologically active secondary metabolites from cyclic peptides to aromatic alkaloids. In this study, we have purified peptides through isolation with buffer assay method and purification method by RP-HPLC. The molecular weight of purified ascidian peptide P1 was determined through the SDS-PAGE analysis and confirmed the molecular weight below 40 kDa. The purified peptides P1 were characterized by Fourier Transform Infrared spectroscopy (FTIR) and Circular Dichroism (CD) analysis. The purified peptides P1 confirmed by peaks at 555.82 (Amide VI), 642.12 (Amide V), 674.17 (Amide IV), 1527.19 (Amide II), 3281.97 (Amide A) and CD spectrum showed the positive peaks at 196 nm and two negative peaks at 193 and 199 nm, which is characteristic of the presence of a helical confirmation presence of peptides. The purified peptides P1 demonstrated the antibacterial activity against the highest inhibition reported the gram-positive bacteria, E. faecalis (11.60 ± 0.16 mm) and lowest inhibition shown the gram negative bacteria, P. aeruginosa (10.33 ± 0.12 mm) in 100 µg/ml concentration. The present study was concluded that purified peptides of the ascidian, Didemnum sp. has a potential antibacterial effect against human pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alonso D, Khalil Z, Satkunanthan N, Livett B (2003) Drugs from the sea: conotoxins as drug leads for neuropathic pain and other neurological conditions. Mini Rev Med Chem 3:785–787

    Article  CAS  PubMed  Google Scholar 

  • Ananthan G, Karthikeyan MM, Selva PA, Raghunathan C (2012) Studies on the seasonal variations in the proximate composition of ascidians from the Palk Bay, southeast coast of India. Asian Pac J Trop Biomed 2(10):793–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arumugam V, Venkatesan M, Ramachandran S, Sundaresan U (2018) Bioactive peptides from marine ascidians and future drug development—a review. Int J Pept Res Ther 24(1):13–18

    Article  CAS  Google Scholar 

  • Azumi K, Yokosawa H, Ishii S (1990) Halocyamines: novel antimicrobial tetrapeptide-like substances isolated from the hemocytes of the solitary ascidian Halocynthia roretzi. Biochemistry 29(1):159–165

    Article  CAS  PubMed  Google Scholar 

  • Balachandar R, Karmegam N, Saravanan M, Subbaiya R, Gurumoorthy P (2018) Synthesis of bioactive compounds from vermicast isolated actinomycetes species and its antimicrobial activity against human pathogenic bacteria. Microb Pathog 121:155–165

    Article  CAS  PubMed  Google Scholar 

  • Barabadi H, Alizadeh A, Ovais M, Ahmadi A, Shinwari ZK, Saravanan M (2017a) Efficacy of green nanoparticles against cancerous and normal cell lines: a systematic review and meta-analysis. IET Nano Biotechnol 12(4):377–391

    Article  Google Scholar 

  • Barabadi H, Ovais M, Shinwari ZK, Saravanan M (2017b) Anti-cancer green bionanomaterials: present status and future prospects. Green Chem Lett Rev 10(4):285–314

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  PubMed  Google Scholar 

  • Carroll AR, Feng Y, Bowden BF, Coll JC (1996a) Studies of Australian ascidians. 5. Virenamides A–C, new cytotoxic linear peptides from the colonial Didemnid ascidian Diplosoma virens. J Org Chem 61(12):4059–4061

    Article  CAS  PubMed  Google Scholar 

  • Carroll AR, Coll JC, Bourne DJ, MacLeod JK, Zabriskie TM, Ireland CM, Bowden BF (1996b) Patellins 1–6 and Trunkamide A: Novel Cyclic Hexa-, Hepta-and Octa-peptides from colonial ascidians, Lissoclinum sp. AUST J CHEM 49(6):659–667

    Article  CAS  Google Scholar 

  • Davidson BS (1993) Ascidians: producers of amino acid derived metabolites. Chem Rev 93:1771–1791

    Article  CAS  Google Scholar 

  • Donia MS, Wang B, Dunbar DC, Desai PV, Patny A, Avery M, Hamann MT (2008) Mollamides B and C, cyclic hexapeptides from the Indonesian tunicate Didemnum molle. J Nat Prod 71(6):941–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang WY, Dahiya R, Qin HL, Mourya R, Maharaj S (2016) Natural proline-rich cyclopolypeptides from marine organisms: chemistry, synthetic methodologies and biological. Status Mar Drugs 14(11):194

    Article  CAS  Google Scholar 

  • Fenical W (1974) Proceedings of the food-drugs from the sea conference, Marine Science Center, University of Puerto Rico; Mayaguez, Puerto Rico. Marine Technology Society, Washington, DC, 388

  • Galinier R, Roger E, Sautiere PE, Aumelas A, Banaigs B, Mitta G (2009) Halocyntin and papillosin, two new antimicrobial peptides isolated from hemocytes of the solitary tunicate, Halocynthia papillosa. Journal of Peptide Science 15(1):48–55

    Article  CAS  PubMed  Google Scholar 

  • Garidel P, Schott H (2006) Fourier-transform midinfrared spectroscopy for analysis and screening of liquid protein formulations. Bioprocess Int 4(6):48–55

    CAS  Google Scholar 

  • Ireland CM, Fernandez A (1996) Cyclic peptide antitumor agent from an ascidian. US 5830996 A

  • Ireland C, Scheuer PJ (1990) Ulicyclamide and ulithiacyclamide, two new small peptides from a marine tunicate. J Am Chem Soc 102(17):5688–5691

    Article  Google Scholar 

  • Jang WS, Kim KN, Lee YS, Nam MH, Lee IH (2002a) Halocidin: a new antimicrobial peptide from hemocytes of the solitary tunicate, Halocynthia aurantium. FEBS Lett 521:81–86

    Article  CAS  PubMed  Google Scholar 

  • Jang WS, Kim KN, Lee YS, Nam MH, Lee IH (2002b) Halocidin: a new antimicrobial peptide from hemocytes of the solitary tunicate, Halocynthia aurantium. FEBS Lett 521(1–3):81–86

    Article  CAS  PubMed  Google Scholar 

  • Karthik R, Saravanan R, Ebenezar KK, Sivamalai T (2015) Isolation, purification and characterization of avian antimicrobial glycopeptide from the posterior salivary gland of Sepia pharaonis. Appl Biochem Biotechnol 175:1507–1518

    Article  CAS  PubMed  Google Scholar 

  • Karthik R, Manigandan V, Saravanan R, Rajesh RP, Baby C (2016) Structural characterization and in vitro biomedical activities of sulfated chitosan from Sepia pharaonis. Int J Biol Macromol 31(8):9–32

    Google Scholar 

  • Kim SK, Wijesekara I (2010) Development and biological activities of marine-derived bioactive peptides: a review. J Funct Foods 2:1–9

    Article  CAS  Google Scholar 

  • Kossuga MH, Lira SP, McHugh S, Torres YR, Lima BA, Gonçalves R, Veloso K, Ferreira AG, Rocha RM, Berlinck RG (2009) Antibacterial modified diketopiperazines from two ascidians of the genus Didemnum. J Braz Chem Soc 20(4):704–711

    Article  CAS  Google Scholar 

  • Lee IH, Zhao C, Cho Y, Harwig SS, Cooper EL, Lehrer RI (1997) Clavanins, α-helical antimicrobial peptides from tunicate hemocytes. Febs Lett 400(2):158–162

    Article  CAS  PubMed  Google Scholar 

  • Lee IH, Lee YS, Kim CH, Kim CR, Hong T, Menzel L, Boo LM, Pohl J, Sherman MA, Waring A, Lehrer RI (2001a) Dicynthaurin: an antimicrobial peptide from hemocytes of the solitary tunicate, Halocynthia aurantium. Biochimica et Biophysica Acta (BBA)-General Subjects. 1527(3):141–148

    Article  CAS  Google Scholar 

  • Lee IH, Zhao C, Nguyen T, Menzel L, Waring AJ, Sherman MA, Lehrer RI (2001b) Clavaspirin, an antimicrobial and hemolytic peptide from Styela clava. J Peptide Res 58:445–456

    Article  CAS  Google Scholar 

  • Li B, Webster TJ (2018) Bacteria antibiotic resistance: new challenges and opportunities for implant-associated orthopedic infections. J Orthop Res 36(1):22–32

    PubMed  Google Scholar 

  • Lighezan L, Georgieva R, Neagu A (2016) the secondary structure and the thermal unfolding parameters of the S-layer protein from Lactobacillus salivarius. Eur Biophys J45(6):491–509

    Article  CAS  Google Scholar 

  • Lordan S, Ross RP, Stanton C (2011) Marine bioactives as functional food ingredients: potential to reduce the incidence of chronic diseases. Mar Drugs 9(6):1056–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer AMS, Glaser KB, Cuevas C (2010) The odyssey of marine pharmaceuticals: a current pipeline perspective. Trends Pharmacol Sci 31:255–265

    Article  CAS  PubMed  Google Scholar 

  • McKinney ML, Schoch RM, Yonavjak L (2007) Environmental science: systems and solutions, 4th edn. Jones and Bartlett Publishers, Sudbury: 2007

    Google Scholar 

  • Naumann D, Helm D, Labischinski H, Giesbrecht P (1991) the characterisation of microorganisms by Fourier-transform infrared spectroscopy (FT-IR). In: Nelson WH (ed) Modern techniques for rapid microbiological analysis. VCH Publishers, New York, pp 43–96

    Google Scholar 

  • Ovais M, Khalil AT, Raza A, Khan MA, Ahmad I, Islam NU, Saravanan M, Ubaid MF, Ali M, Shinwari ZK (2016) Green synthesis of silver nanoparticles via plant extracts: beginning a new era in cancer theranostics. Nanomedicine 12(23):3157–3177

    Article  CAS  Google Scholar 

  • Ovais M, Khalil AT, Raza A, Islam NU, Ayaz M, Saravanan M, Ali M, Ahmad I, Shahid M, Shinwari ZK (2018) Multifunctional theranostic applications of biocompatible green-synthesized colloidal nanoparticles. Appl Microbiol Biotechnol (10):4393–408

  • Palanisamy SK, Rajendran NM, Marino A (2017) Natural products diversity of marine ascidians (tunicates; ascidiacea) and successful drugs in clinical development. Nat Prod Bioprospect 7(1):1–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palanisamy SK, Arumugam V, Rajendran S, Ramadoss A, Nachimuthu S, Peter DM, Sundaresan U (2018) Chemical diversity and anti-proliferative activity of marine algae. Nat Prod Res 25:1–5

    Google Scholar 

  • Pfalzgraff A, Brandenburg K, Weindl G (2018) Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds. Front Pharmacol 9:281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phyo Y, Ribeiro J, Fernandes C, Kijjoa A, Pinto M ((2018) Marine natural peptides: determination of absolute configuration using liquid chromatography methods and evaluation of bioactivities. Molecules 23(2):306

    Article  CAS  PubMed Central  Google Scholar 

  • Rinehart KL (2000) Antitumor compounds from tunicates. Med res rev 20(1):1–27

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2006) SDS-polyacrylamide gel electrophoresis of proteins. CSH Protoc 2006(4):pdb.prot4540

    PubMed  Google Scholar 

  • Saravanan M, Barik SK, MubarakAli D, Prakash P, Pugazhendhi A (2018a) Synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria. Microb Pathog 116:221–226

    Article  CAS  PubMed  Google Scholar 

  • Saravanan M, Arokiyaraj S, Lakshmi T, Pugazhendhi A (2018b) Synthesis of silver nanoparticles from Phenerochaete chrysosporium (MTCC-787) and their antibacterial activity against human pathogenic bacteria. Microb Pathog 117:68–72

    Article  CAS  PubMed  Google Scholar 

  • Saravanan M, Ramachandran B, Barabadi H (2018c) The prevalence and drug resistance pattern of extended spectrum β–lactamases (ESBLs) producing Enterobacteriaceae in Africa. Microbial Pathog 114:180–192

    Article  Google Scholar 

  • Shenkar N, Swalla BJ (2011) Global diversity of Ascidiacea. PLoS ONE 6(6):e20657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tincu JA, Taylor SW (2004) Antimicrobial peptides from marine invertebrates. Antimicrob Agents Chemother 48(10):3645–3654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tincu JA, Craig AG, Taylor SW (2000) Plicatamide: a lead to the biosynthetic origins of the tunichromes? Biochem Biophys Res Commun 70(2):421–424

    Article  CAS  Google Scholar 

  • Ueda A, Suzuki M, Honma T, Nagai H, Nagashima Y, Shiomi K (2006) Purification, properties and cDNA cloning of neoverrucotoxin (neoVTX), a hemolytic lethal factor from the stonefish Synanceia verrucosa venom. Biochim Biophy Acta 1760(11):1713–1722

    Article  CAS  Google Scholar 

  • Wallace BA (2009) Protein characterisation by synchrotron radiation circular dichroism spectroscopy. QRev Biophys 42:317–370

    CAS  Google Scholar 

  • Xing H, Tong M, Jiang N, Zhang X, Hu H, Pan H, Li D (2017) Antitumour bioactive peptides isolated from marine organisms. Clin Exp Pharmacol Physiol 44(11):1077–1082

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work finically is supported by the SERB, India under Grant SB/YS/LS-374/2013, UGC-FIST, DST-PURSE, CSIR-SRF and UGC-SAP, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umamaheswari Sundaresan.

Ethics declarations

Conflict of interest

All the authors declared that no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants and animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arumugam, V., Venkatesan, M., Ramachandran, K. et al. Purification, Characterization and Antibacterial Properties of Peptide from Marine Ascidian Didemnum sp.. Int J Pept Res Ther 26, 201–208 (2020). https://doi.org/10.1007/s10989-019-09829-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-019-09829-z

Keywords

Navigation