Skip to main content
Log in

An optimization of heat transfer of nanofluid flow in a helically coiled pipe using Taguchi method

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this research, water–Fe3O4 nanofluid flow and heat transfer factors are optimized in a helically coiled pipe using Taguchi method. Numerical simulations using the ANSYS Fluent 18.2 are obtained first to provide the input data for the Taguchi method. Experiments are also performed to validate the results of the simulations. An experimental setup is constructed and initial experiments with water and water–Fe3O4 nanofluid are executed using various mass flow rates. A single-phase approach is employed as the numerical simulation model. The Taguchi method is selected as a test design method. Three different control factors (mass flow rate, coil curvature ratio and fluid type) with four levels are selected with the Taguchi method. An effective parameter, η, is defined to investigate the influence of different control parameters on heat transfer and fluid flow characteristics. Results show that mass flow rate is the most effective factor on η. Fluid type and the coil curvature ratio are next effective parameters, respectively. Through the course of this study, it is found that the best conditions to achieve the maximum η value are: mass flow rate value of 6.98 g s−1, 1% vol. nanofluid as fluid type and coil curvature ratio of 0.048.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

A :

Area

\(C_{\text{p}}\) :

Specific heat

d, R :

Pipe diameter, pipe radius

\(D_{\text{c}} ,a\) :

Coil diameter, coil radius

f :

Friction factor

\(\bar{h}\) :

Average heat transfer coefficient

k :

Conductivity

\(\dot{m}\) :

Mass flow rate

Nu :

Nusselt number

p :

Coil pitch

\(q_{\text{s}}\) :

Heat transfer rate

Re :

Reynolds number

r :

Radial position

T :

Temperature

\(\vec{V}\) :

Velocity vector

μ :

Dynamic viscosity

υ :

Kinematic viscosity

ρ :

Density

φ :

Nanoparticles volume fraction in the base fluid

\(\Delta T_{\text{lm}}\) :

Logarithmic temperature difference

\(\Delta P\) :

Pressure drop

η :

Dimensionless parameter for optimization

δ :

Uncertainty

bf:

Base fluid

nf:

Nanofluid

b, o:

Bulk, outlet

b, i:

Bulk, inlet

w:

Distilled water

c:

Coil

ave:

Average

References

  1. Huminic G, Huminic A. Application of nanofluids in heat exchangers: a review. Renew Sustain Energy Rev. 2012;16(8):5625–38.

    Article  CAS  Google Scholar 

  2. Wen D, Lin G, Vafaei S, Zhang K. Review of nanofluids for heat transfer applications. Particuology. 2009;7(2):141–50.

    Article  CAS  Google Scholar 

  3. Rakhsha M, Akbaridoust F, Abbassi A, Majid S-A. Experimental and numerical investigations of turbulent forced convection flow of nano-fluid in helical coiled tubes at constant surface temperature. Powder Technol. 2015;283:178–89.

    Article  CAS  Google Scholar 

  4. Suresh S, Chandrasekar M, Selvakumar P. Experimental studies on heat transfer and friction factor characteristics of CuO/water nanofluid under laminar flow in a helically dimpled tube. Heat Mass Transf. 2012;48(4):683–94.

    Article  CAS  Google Scholar 

  5. Xin R, Ebadian M. The effects of Prandtl numbers on local and average convective heat transfer characteristics in helical pipes. J Heat Transf. 1997;119(3):467–73.

    Article  CAS  Google Scholar 

  6. Huminic G, Huminic A. Heat transfer characteristics in double tube helical heat exchangers using nanofluids. Int J Heat Mass Transf. 2011;54(19–20):4280–7.

    Article  CAS  Google Scholar 

  7. Manlapaz RL, Churchill SW. Fully developed laminar flow in a helically coiled tube of finite pitch. Chem Eng Commun. 1980;7(1–3):57–78.

    Article  CAS  Google Scholar 

  8. Cioncolini A, Santini L. An experimental investigation regarding the laminar to turbulent flow transition in helically coiled pipes. Exp Therm Fluid Sci. 2006;30(4):367–80.

    Article  CAS  Google Scholar 

  9. Zhu H, Han D, Meng Z, Wu D, Zhang C. Preparation and thermal conductivity of CuO nanofluid via a wet chemical method. Nanoscale Res Lett. 2011;6(1):181.

    Article  CAS  Google Scholar 

  10. Yu W, France DM, Routbort JL, Choi SU. Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf Eng. 2008;29(5):432–60.

    Article  CAS  Google Scholar 

  11. Pang C, Jung J-Y, Kang YT. Thermal conductivity enhancement of Al2O3 nanofluids based on the mixtures of aqueous NaCl solution and CH3OH. Int J Heat Mass Transf. 2013;56(1–2):94–100.

    Article  CAS  Google Scholar 

  12. A.I.A. AL-Musawi, A. Taheri, A. Farzanehnia, M. Sardarabadi, M. Passandideh-Fard. Numerical study of the effects of nanofluids and phase-change materials in photovoltaic thermal (PVT) systems. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7972-6.

    Article  Google Scholar 

  13. Goharkhah M, Ashjaee M, Shahabadi M. Experimental investigation on convective heat transfer and hydrodynamic characteristics of magnetite nanofluid under the influence of an alternating magnetic field. Int J Therm Sci. 2016;99:113–24.

    Article  CAS  Google Scholar 

  14. Zonouzi SA, et al. Experimental investigation of the flow and heat transfer of magnetic nanofluid in a vertical tube in the presence of magnetic quadrupole field. Exp Therm Fluid Sci. 2018;91:155–65.

    Article  CAS  Google Scholar 

  15. Akbaridoust F, Rakhsha M, Abbassi A, Saffar-Avval M. Experimental and numerical investigation of nanofluid heat transfer in helically coiled tubes at constant wall temperature using dispersion model. Int J Heat Mass Transf. 2013;58(1–2):480–91.

    Article  Google Scholar 

  16. A. Safari, M. Saffar-Avval, E. Amani, Numerical investigation of turbulent forced convection flow of nano fluid in curved and helical pipe using four-equation model. Powder Technol. 2018;328:47–53.

    Article  CAS  Google Scholar 

  17. Kotcioglu I, Cansiz A, Khalaji MN. Experimental investigation for optimization of design parameters in a rectangular duct with plate-fins heat exchanger by Taguchi method. Appl Therm Eng. 2013;50(1):604–13.

    Article  Google Scholar 

  18. Hosseinzadeh M, Salari A, Sardarabadi M, Passandideh-Fard M. Optimization and parametric analysis of a nanofluid based photovoltaic thermal system: 3D numerical model with experimental validation. Energy Convers Manag. 2018;160:93–108.

    Article  CAS  Google Scholar 

  19. Etghani MM, Baboli SAH. Numerical investigation and optimization of heat transfer and exergy loss in shell and helical tube heat exchanger. Appl Therm Eng. 2017;121:294–301.

    Article  Google Scholar 

  20. A. Abadeh, M. Mohammadi, M. Passandideh-Fard. Experimental investigation on heat transfer enhancement for a ferrofluid in a helically coiled pipe under constant magnetic field. J Therm Anal Calorim. 2019;135(2):1069–79.

    Article  CAS  Google Scholar 

  21. A. Abadeh, M. Passandideh-Fard, M.J. Maghrebi, M. Mohammadi. Stability and magnetization of Fe3O4/water nanofluid preparation characteristics using Taguchi method. J Therm Anal Calorim. 2019;135(2):1323–34.

    Article  CAS  Google Scholar 

  22. J. Mohamoud, S. Tejvir. Critical review on nanofluids: preparation characterization and applications. J Nanomater.

  23. Sundar LS, Singh MK, Sousa AC. Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications. Int. Commun. Heat Mass Transf. 2013;44:7–14.

    Article  CAS  Google Scholar 

  24. Maadi SR, Kolahan A, Passandideh-Fard M, Sardarabadi M, Moloudi R. Characterization of PVT systems equipped with nanofluids-based collector from entropy generation. Energy Convers Manag. 2017;150:515–31.

    Article  CAS  Google Scholar 

  25. Akhavan-Behabadi M, Pakdaman MF, Ghazvini M. Experimental investigation on the convective heat transfer of nanofluid flow inside vertical helically coiled tubes under uniform wall temperature condition. Int Commun Heat Mass Transf. 2012;39(4):556–64.

    Article  CAS  Google Scholar 

  26. Mahian O, et al. Recent advances in modeling and simulation of nanofluid flows-Part I: fundamentals and theory. Phys Rep. 2019;790:1–48.

    Article  CAS  Google Scholar 

  27. Patankar SV, Pratap VS, Spalding DB. Prediction of laminar flow and heat transfer in helically coiled pipes. J Fluid Mech. 1974;62(3):117–29.

    Article  Google Scholar 

  28. Liu Y, Wu R, Yang P, Wang T, Liu H, Wang L. Parameter study of the injection configuration in a zero boil-off hydrogen storage tank using orthogonal test design. Appl Therm Eng. 2016;109:283–94.

    Article  CAS  Google Scholar 

  29. Wang H, Liu Y-W, Yang P, Wu R-J, He Y-L. Parametric study and optimization of H-type finned tube heat exchangers using Taguchi method. Appl Therm Eng. 2016;103:128–38.

    Article  Google Scholar 

  30. Li Q, Xuan Y, Wang J. Experimental investigations on transport properties of magnetic fluids. Exp Therm Fluid Sci. 2005;30(2):109–16.

    Article  CAS  Google Scholar 

  31. Bica D, Vekas L, Raşa M. Preparation and magnetic properties of concentrated magnetic fluids on alcohol and water carrier liquids. J Magn Magn Mater. 2002;252:10–2.

    Article  CAS  Google Scholar 

  32. Wang X, Zhang C, Wang X, Gu H. The study on magnetite particles coated with bilayer surfactants. Appl Surf Sci. 2007;253(18):7516–21.

    Article  CAS  Google Scholar 

  33. M. Ghobadi, Y.S. Muzychka. Fully developed heat transfer in mini scale coiled tubing for constant wall temperature. In: ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers; 2013. p. V08CT09A048.

  34. R.K. Roy, A primer on the Taguchi method. Society of Manufacturing Engineers; 2010.

  35. Farzanehnia A, Khatibi M, Sardarabadi M, Passandideh-Fard M. Experimental investigation of multiwall carbon nanotube/paraffin based heat sink for electronic device thermal management. Energy Convers Manag. 2019;179:314–25.

    Article  CAS  Google Scholar 

  36. Sundar LS, Naik M, Sharma K, Singh M, Reddy TCS. Experimental investigation of forced convection heat transfer and friction factor in a tube with Fe3O4 magnetic nanofluid. Exp Therm Fluid Sci. 2012;37:65–71.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Passandideh-Fard.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Uncertainty analysis

Appendix: Uncertainty analysis

In order to investigate the reliability of the measurements, an uncertainty analysis is performed for the experimental data [35]. The values of uncertainties estimated with different instruments are given in Table 7. The maximum possible error for the parameters involved in the analysis are estimated and summarized. For example, for calculating the absolute uncertainty of Nusselt number, the following relation is employed [36]:

$$\delta Nu = \sqrt {\left( {\frac{\partial Nu}{\partial h}\delta h} \right)^{2} + \left( {\frac{\partial Nu}{\partial D}\delta D} \right)^{2} + \left( {\frac{\partial Nu}{\partial K}\delta K} \right)^{2} } ,$$
(21)

and for the relative uncertainty:

$$\frac{\delta Nu}{Nu} = \sqrt {\left( {\frac{\delta h}{h}} \right)^{2} + \left( {\frac{\delta D}{D}} \right)^{2} + \left( {\frac{\delta K}{K}} \right)^{2} } .$$
(22)
Table 7 Measurement devices, their information and uncertainty

Similarly, for other parameters, we have:

$$\frac{{\delta \Delta T_{\text{lm}} }}{{\Delta T_{\text{lm}} }} = \sqrt {\left( {\frac{{\delta T_{\text{b,i}} }}{{T_{\text{b,i}} }}} \right)^{2} + \left( {\frac{{\delta T_{\text{b,o}} }}{{T_{\text{b,o}} }}} \right)^{2} + \left( {\frac{{\delta T_{\text{s}} }}{{T_{\text{s}} }}} \right)^{2} }$$
(23)
$$\frac{\delta h}{h} = \sqrt {\left( {\frac{{\delta q_{\text{s}} }}{{q_{\text{s}} }}} \right)^{2} + \left( {\frac{{\delta \Delta T_{\text{lm}} }}{{\Delta T_{\text{lm}} }}} \right)^{2} + \left( {\frac{\delta A}{A}} \right)^{2} }$$
(24)
$$\frac{\delta Re}{Re} = \sqrt {\left( {\frac{\delta \upsilon }{\upsilon }} \right)^{2} + \left( {\frac{\delta d}{d}} \right)^{2} + \left( {\frac{\delta v}{v}} \right)^{2} } .$$
(25)

Table 8 presents the relative uncertainty of various parameters used in this research.

Table 8 Uncertainty of different parameters

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, M., Abadeh, A., Nemati-Farouji, R. et al. An optimization of heat transfer of nanofluid flow in a helically coiled pipe using Taguchi method. J Therm Anal Calorim 138, 1779–1792 (2019). https://doi.org/10.1007/s10973-019-08167-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08167-y

Keywords

Navigation