Skip to main content
Log in

Numerical investigation of the mixed convection of a magnetic nanofluid in an annulus between two vertical concentric cylinders under the influence of a non-uniform external magnetic field

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present study, the hydrothermal behavior of a magnetic nanofluid (4 vol% magnetite–water) in the annular space between two vertical circular cylinders under the influence of a linear magnetic field with negative gradient is numerically investigated. In particular, the effects of the Grashof number (1000 ≤ Gr ≤ 50,000), Reynolds number (20 ≤ Re ≤ 200), and the annulus radius ratio (1.5 ≤ Do/Di ≤ 3.5) on the hydrothermal characteristics of the magnetic nanofluid are presented in detail. The flow is assumed to be steady, incompressible, and viscous. The two-phase mixture model is used to simulate the flow and heat transfer of the magnetic nanofluid. The three-dimensional governing equations are discretized using the finite volume scheme, while the SIMPLE algorithm is employed to couple the velocity and pressure. Moreover, the second-order upwind scheme is used to discretize the convective terms of the momentum and energy equations. The results show that the skin friction coefficient on the inner and outer walls of the annuli increases and decreases, respectively, by enhancing the Grashof number as well as the ratio of the radius. It is found that the Nusselt number increases by increasing the Grashof number. In the presence of an external magnetic field with the negative gradient, the skin friction coefficient on the inner and outer walls of the annulus is enhanced by decreasing the Reynolds number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Abbreviations

C f :

Surface friction coefficient

C p :

Constant pressure specific heat

d :

Particle diameter

D :

Diameter

\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {g}\) :

Gravitational acceleration vector

G :

Magnetic field gradient

Gr :

Grashof number

\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {H}\) :

Magnetic field intensity vector

H :

Magnitude of magnetic field intensity vector

k :

Conductivity

k B :

Boltzmann constant

L :

Channel length

m :

Magnetic moment

M :

Magnetization

Nu :

Nusselt number

p :

Pressure

\(q\) :

Heat flux

r :

Radial direction

R :

Radius

Re :

Reynolds number

T :

Temperature

\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {v}\) :

Fluid velocity vector

\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {v}_{{{\text{dr}},{\text{p}}}}\) :

Drift velocity of magnetic nanoparticles

y :

Longitudinal direction

α :

Volume fraction

β :

Thermal expansion coefficient

θ :

Peripheral direction

µ :

Effective viscosity

µ B :

Bohr magneton

µ 0 :

Magnetic permeability in vacuum

ρ :

Density

ave:

Average

i:

Inner parameter

f:

Base fluid

m:

Mixture

o:

Outer parameter

p:

Magnetic particles

w:

Wall

0:

Inlet condition

References

  1. Miller P, Byrnes JJ, Benforado DM. Heat transfer to water in an annulus. AIChE J. 1955;1(4):501–4. https://doi.org/10.1002/aic.690010420.

    Article  CAS  Google Scholar 

  2. Bergles A, Newell P. The influence of ultrasonic vibrations on heat transfer to water flowing in annuli. Int J Heat Mass Transf. 1965;8(10):1273–80. https://doi.org/10.1016/0017-9310(65)90055-4.

    Article  Google Scholar 

  3. Quarmby A. Some measurements of turbulent heat transfer in the thermal entrance region of concentric annuli. Int J Heat Mass Transf. 1967;10(3):267–76. https://doi.org/10.1016/0017-9310(67)90144-5.

    Article  CAS  Google Scholar 

  4. Radhia RB, Corriou JP, Harmand S, Jabrallah SB. Numerical study of evaporation in a vertical annulus heated at the inner wall. Int J Therm Sci. 2011;50(10):1996–2005. https://doi.org/10.1016/j.ijthermalsci.2011.03.007.

    Article  Google Scholar 

  5. Zerari K, Afrid M, Groulx D. Forced and mixed convection in the annulus between two horizontal confocal elliptical cylinders. Int J Therm Sci. 2013;74:126–44. https://doi.org/10.1016/j.ijthermalsci.2013.06.006.

    Article  Google Scholar 

  6. Ho CJ, Lin YH. Thermal convection heat transfer of air/water layers enclosed in horizontal annuli with mixed boundary conditions. Wärme-und Stoffübertragung. 1989;24(4):211–24. https://doi.org/10.1007/BF01625497.

    Article  CAS  Google Scholar 

  7. Al Zahrani MS, Kiwan S. Mixed convection heat transfer in the annulus between two concentric vertical cylinders using porous layers. Transp Porous Media. 2009;76(3):391–405. https://doi.org/10.1007/s11242-008-9253-5.

    Article  CAS  Google Scholar 

  8. Alipour M, Hosseini R, Rezania A. Radius ratio effects on natural heat transfer in concentric annulus. Exp Therm Fluid Sci. 2013;49:135–40. https://doi.org/10.1016/j.expthermflusci.2013.04.011.

    Article  Google Scholar 

  9. Bouras A, Djezzar M, Ghernoug C. Numerical simulation of natural convection between two elliptical cylinders: influence of Rayleigh number and Prandtl number. Energy Procedia. 2013;36:788–97. https://doi.org/10.1016/j.egypro.2013.07.091.

    Article  CAS  Google Scholar 

  10. Nobari MRH, Shiniyan B, Mirzaei M. Mixed convection in a vertical helical annular pipe. Int J Heat Mass Transf. 2014;73:468–82. https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.068.

    Article  Google Scholar 

  11. Ball KS, Farouk B, Dixit V. An experimental study of heat transfer in a vertical annulus with a rotating inner cylinder. Int J Heat Mass Transf. 1989;32(8):1517–27. https://doi.org/10.1016/0017-9310(89)90073-2.

    Article  CAS  Google Scholar 

  12. Chang SW, Yang TL, Shih D-W. Jet-array impingement heat transfer in a concentric annular channel with rotating inner cylinder. Int J Heat Mass Transf. 2009;52(5–6):1254–67. https://doi.org/10.1016/j.ijheatmasstransfer.2008.08.023.

    Article  CAS  Google Scholar 

  13. El-Maghlany W, Eid E, Teamah M, Shahrour I. Experimental study for double pipe heat exchanger with rotating inner pipe. Int J Adv Sci Tech Res. 2012;4(2):507–24.

    Google Scholar 

  14. Rashidi S, Eskandarian M, Mahian O, Poncet S. Combination of nanofluid and inserts for heat transfer enhancement. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7070-9.

    Article  Google Scholar 

  15. Taylor R, Coulombe S, Otanicar T, Phelan P, Gunawan A, Lv W, Rosengarten G, Prasher R, Tyagi H. Small particles, big impacts: a review of the diverse applications of nanofluids. J Appl Phys. 2013;113(1):011301. https://doi.org/10.1063/1.4754271.

    Article  CAS  Google Scholar 

  16. Rashidi S, Mahian O, Mohseni Languri E. Applications of nanofluids in condensing and evaporating systems. J Therm Anal Calorim. 2018;131:2027–39. https://doi.org/10.1007/s10973-017-6773-7.

    Article  CAS  Google Scholar 

  17. Das SK, Choi SU, Yu W, Pradeep T. Nanofluids: science and technology. New Jersey: Wiley; 2007.

    Book  Google Scholar 

  18. Rashidi S, Karimi N, Mahian O, Abolfazli Esfahani J. A concise review on the role of nanoparticles upon the productivity of solar desalination systems. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7500-8.

    Article  Google Scholar 

  19. Mahian O, Kolsi L, Amani M, Estelle P, Ahmadi G, Kleinstreuer C, Marshall JS, Siavashi M, Taylor RA, Niazmand H, Wongwises S, Hayat T, Kolanjiyil A, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows-Part I: fundamentals and theory. Phys Rep. 2018. https://doi.org/10.1016/j.physrep.2018.11.004.

    Article  Google Scholar 

  20. Mahian O, Kolsi L, Amani M, Estelle P, Ahmadi G, Kleinstreuer C, Marshall JS, Siavashi M, Taylor RA, Niazmand H, Wongwises S, Hayat T, Kolanjiyil A, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows-Part II: applications. Phys Rep. 2018. https://doi.org/10.1016/j.physrep.2018.11.003.

    Article  Google Scholar 

  21. Cruz-Fierro CF. Coupled momentum and heat transport in laminar axisymmetric pipe flow of ferrofluids in non-uniform magnetic fields: theory and simulation. Oregon: Oregon State University; 2003.

    Google Scholar 

  22. Nkurikiyimfura I, Wang Y, Pan Z. Heat transfer enhancement by magnetic nanofluids—a review. Renew Sustain Energy Rev. 2013;21:548–61. https://doi.org/10.1016/j.rser.2012.12.039.

    Article  CAS  Google Scholar 

  23. Bahiraei M, Hangi M. Flow and heat transfer characteristics of magnetic nanofluids: a review. J Magn Magn Mater. 2015;374:125–38. https://doi.org/10.1016/j.jmmm.2014.08.004.

    Article  CAS  Google Scholar 

  24. Ibanez G, Cuevas S, de Haro ML. Optimization of a magnetohydrodynamic flow based on the entropy generation minimization method. Int Commun Heat Mass Transf. 2006;33(3):295–301. https://doi.org/10.1016/j.icheatmasstransfer.2005.12.003.

    Article  CAS  Google Scholar 

  25. Lian W, Xuan Y, Li Q. Characterization of miniature automatic energy transport devices based on the thermomagnetic effect. Energy Convers Manag. 2009;50:35–42. https://doi.org/10.1016/j.enconman.2008.09.005.

    Article  CAS  Google Scholar 

  26. Li Q, Lian W, Sun H, Xuan Y. Investigation on operational characteristics of a miniature automatic cooling device. Int J Heat Mass Transf. 2008;51:5033–9. https://doi.org/10.1016/j.ijheatmasstransfer.2008.04.031.

    Article  Google Scholar 

  27. Jahani K, Mohammadi M, Shafii MB, Shiee Z. Promising technology for electronic cooling: nanofluidic micro pulsating heat pipes. J Electron Packag. 2013;135:021005. https://doi.org/10.1115/1.4023847.

    Article  CAS  Google Scholar 

  28. Taslimifar M, Mohammadi M, Afshin H, Saidi MH, Shafii MB. Overall thermal performance of ferrofluidic open loop pulsating heat pipes: an experimental approach. Int J Therm Sci. 2013;65:234–41. https://doi.org/10.1016/j.ijthermalsci.2012.10.016.

    Article  CAS  Google Scholar 

  29. Lee YW, Chang TL. Novel perturbations between magnetic nanofluid and the thermal fluidic system at heat dissipation. Microelectron Eng. 2013;111:58–63. https://doi.org/10.1016/j.mee.2013.01.048.

    Article  CAS  Google Scholar 

  30. Fumoto K, Yamagishi H, Ikegawa M. A mini heat transport device based on thermo-sensitive magnetic fluid. Nanoscale Microscale Thermophys Eng. 2007;11:201–10. https://doi.org/10.1080/15567260701333869.

    Article  CAS  Google Scholar 

  31. Bahiraei M, Hangi M. Investigating the efficacy of magnetic nanofluid as a coolant in double-pipe heat exchanger in the presence of magnetic field. Energy Convers Manag. 2013;76:1125–33. https://doi.org/10.1016/j.enconman.2013.09.008.

    Article  CAS  Google Scholar 

  32. Odenbach S. Ferrofluids. Berlin: Springer; 2002.

    Book  Google Scholar 

  33. Rashidi S, Bovand M, Esfahani JA. Opposition of magnetohydrodynamic and Al2O3–water nanofluid flow around a vertex facing triangular obstacle. J Mol Liq. 2016;215:276–84. https://doi.org/10.1016/j.molliq.2015.12.034.

    Article  CAS  Google Scholar 

  34. Rashidi S, Esfahani JA. The effect of magnetic field on instabilities of heat transfer from an obstacle in a channel. J Magn Magn Mater. 2015;391:5–11. https://doi.org/10.1016/j.jmmm.2015.04.095.

    Article  CAS  Google Scholar 

  35. Rashidi S, Bovand M, Esfahani JA. Application of magnetohydrodynamics for suppressing the fluctuations in the unsteady flow around two side-by-side circular obstacles. Eur Phys J Plus. 2016;131:423. https://doi.org/10.1140/epjp/i2016-16423-9.

    Article  Google Scholar 

  36. Bovand M, Rashidi S, Esfahani JA, Masoodi R. Control of wake destructive behavior for different bluff bodies in channel flow by magnetohydrodynamics. Eur Phys J Plus. 2016;131:194. https://doi.org/10.1140/epjp/i2016-16194-3.

    Article  Google Scholar 

  37. Celik O, Can MM, Firat T. Size dependent heating ability of CoFe2O4 nanoparticles in AC magnetic field for magnetic nanofluid hyperthermia. J Nanopart Res. 2014;16:2321. https://doi.org/10.1007/s11051-014-2321-6.

    Article  CAS  Google Scholar 

  38. Rashidi S, Abolfazli Esfahani J, Maskaniyan M. Applications of magnetohydrodynamics in biological systems-a review on the numerical studies. J Magn Magn Mater. 2017;439:358–72. https://doi.org/10.1016/j.jmmm.2017.05.014.

    Article  CAS  Google Scholar 

  39. Mirmasoumi S, Behzadmehr A. Numerical study of laminar mixed convection of a nanofluid in a horizontal tube using two-phase mixture model. Appl Therm Eng. 2008;28(7):717–27. https://doi.org/10.1016/j.applthermaleng.2007.06.019.

    Article  CAS  Google Scholar 

  40. Cianfrini M, Corcione M, Quintino A. Natural convection heat transfer of nanofluids in annular spaces between horizontal concentric cylinders. Appl Therm Eng. 2011;31(17–18):4055–63. https://doi.org/10.1016/j.applthermaleng.2011.08.010.

    Article  CAS  Google Scholar 

  41. Shahi M, Mahmoudi AH, Talebi F. A numerical investigation of conjugated-natural convection heat transfer enhancement of a nanofluid in an annular tube driven by inner heat generating solid cylinder. Int Commun Heat Mass Transf. 2011;38(4):533–42. https://doi.org/10.1016/j.icheatmasstransfer.2010.12.022.

    Article  Google Scholar 

  42. Moghari RM, Akbarinia A, Shariat M, Talebi F, Laur R. Two phase mixed convection Al2O3 water nanofluid flow in an annulus. Int J Multiph Flow. 2012;37(6):585–95. https://doi.org/10.1016/j.ijmultiphaseflow.2011.03.008.

    Article  CAS  Google Scholar 

  43. Alawi OA, Sidik NAC, Dawood HK. Natural convection heat transfer in horizontal concentric annulus between outer cylinder and inner flat tube using nanofluid. Int Commun Heat Mass Transf. 2014;57:65–71. https://doi.org/10.1016/j.icheatmasstransfer.2014.07.001.

    Article  Google Scholar 

  44. Dawood HK, Mohammed HA, Sidik NAC, Munisamy KM, Wahid MA. Forced, natural and mixed-convection heat transfer and fluid flow in annulus: a review. Int Commun Heat Mass Transf. 2015;62:45–57. https://doi.org/10.1016/j.icheatmasstransfer.2015.01.006.

    Article  Google Scholar 

  45. Malvandi A, Ganji DD. Mixed convection of alumina–water nanofluid inside a concentric annulus considering nanoparticle migration. Particuology. 2016;24:113–22. https://doi.org/10.1016/j.partic.2014.12.017.

    Article  CAS  Google Scholar 

  46. Wrobel W, Fornalik-Wajs E, Szmyd JS. Experimental and numerical analysis of thermo-magnetic convection in a vertical annular enclosure. Int J Heat Fluid Flow. 2010;31(6):1019–31. https://doi.org/10.1016/j.ijheatfluidflow.2010.05.012.

    Article  CAS  Google Scholar 

  47. Sheikholeslami M, Abelman S. Two phase simulation of nanofluid flow and heat transfer in an annulus in the presence of an axial magnetic field. IEEE Trans Nanotechnol. 2015;14:561–9. https://doi.org/10.1109/TNANO.2015.2416318.

    Article  CAS  Google Scholar 

  48. Malvandi A, Moshizi SA, Ganji DD. Effect of magnetic fields on heat convection inside a concentric annulus filled with Al2O3–water nanofluid. Adv Powder Technol. 2014;25:1817–24. https://doi.org/10.1016/j.apt.2014.07.013.

    Article  CAS  Google Scholar 

  49. Abbas Z, Hasnain J. Two-phase magnetoconvection flow of magnetite (Fe3O4) nanoparticles in a horizontal composite porous annulus. Results Phys. 2017;7:574–80. https://doi.org/10.1016/j.rinp.2016.12.022.

    Article  Google Scholar 

  50. Hatami M, Zhou J, Geng J, Jing D. Variable magnetic field (VMF) effect on the heat transfer of a half-annulus cavity filled by Fe3O4-water nanofluid under constant heat flux. J Magn Magn Mater. 2018;451:173–82. https://doi.org/10.1016/j.jmmm.2017.10.110.

    Article  CAS  Google Scholar 

  51. Moshiz SA, Malvandi A. Different modes of nanoparticle migration at mixed convection of Al2O3–water nanofluid inside a vertical microannulus in the presence of heat generation/absorption. J Therm Anal Calorim. 2016;126:1947–62. https://doi.org/10.1007/s10973-016-5560-1.

    Article  CAS  Google Scholar 

  52. Hosseinzadeh M, Heris SZ, Beheshti A, Shanbedi M. Convective heat transfer and friction factor of aqueous Fe3O4 nanofluid flow under laminar regime. J Therm Anal Calorim. 2016;124:827–38. https://doi.org/10.1007/s10973-015-5113-z.

    Article  CAS  Google Scholar 

  53. Mashaei PR, Shahryari M, Madani S. Numerical hydrothermal analysis of water–Al2O3 nanofluid forced convection in a narrow annulus filled by porous medium considering variable properties. J Therm Anal Calorim. 2016;126:891–904. https://doi.org/10.1007/s10973-016-5550-3.

    Article  CAS  Google Scholar 

  54. Dogonchi AS, Sheremet MA, Ganji DD. Free convection of copper–water nanofluid in a porous gap between hot rectangular cylinder and cold circular cylinder under the effect of inclined magnetic field. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7396-3.

    Article  Google Scholar 

  55. Dogonchi AS, Waqas M, Seyyedi SM, Hashemi-Tilehnoee M, Ganji DD. CVFEM analysis for Fe3O4–H2O nanofluid in an annulus subject to thermal radiation. Int J Heat Mass Transf. 2019;132:473–83. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.124.

    Article  CAS  Google Scholar 

  56. Bahiraei M, Hangi M, Rahbari A. A two-phase simulation of convective heat transfer characteristics of water–Fe3O4 ferrofluid in a square channel under the effect of permanent magnet. Appl Therm Eng. 2019;147:991–7. https://doi.org/10.1016/j.applthermaleng.2018.11.011.

    Article  CAS  Google Scholar 

  57. Xuan YM, Li Q. Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow. 2000;21:58–64. https://doi.org/10.1016/S0142-727X(99)00067-3.

    Article  CAS  Google Scholar 

  58. Tynjala T. Theoretical and numerical study of thermomagnetic convection in magnetic fluids. Finland: Acta Universitatis Lappeenrantaensis; 2005.

    Google Scholar 

  59. Jafari A, Tynjälä T, Mousavi SM, Sarkomaa P. Simulation of heat transfer in a ferrofluid using computational fluid dynamics technique. Int J Heat Fluid Flow. 2008;29(4):1197–202. https://doi.org/10.1016/j.ijheatfluidflow.2008.01.007.

    Article  CAS  Google Scholar 

  60. Aminfar H, Mohammadpourfard M, Kahnamouei YN. A 3D numerical simulation of mixed convection of a magnetic nanofluid in the presence of non-uniform magnetic field in a vertical tube using two phase mixture model. J Magn Magn Mater. 2011;323(15):1963–72. https://doi.org/10.1016/j.jmmm.2011.02.039.

    Article  CAS  Google Scholar 

  61. Aminfar H, Mohammadpourfard M, Mohseni F. Two-phase mixture model simulation of the hydro-thermal behavior of an electrical conductive ferrofluid in the presence of magnetic fields. J Magn Magn Mater. 2012;324:830–84. https://doi.org/10.1016/j.jmmm.2011.09.028.

    Article  CAS  Google Scholar 

  62. Bahiraei M, Rahmani R, Yaghoobi A, Khodabandeh E, Mashayekhi R, Amani M. Recent research contributions concerning use of nanofluids in heat exchangers: a critical review. Appl Therm Eng. 2018;133:137–59. https://doi.org/10.1016/j.applthermaleng.2018.01.041.

    Article  CAS  Google Scholar 

  63. Rashidi M, Nasiri M, Khezerloo M, Laraqi N. Numerical investigation of magnetic field effect on mixed convection heat transfer of nanofluid in a channel with sinusoidal walls. J Magn Magn Mater. 2016;401:159–68. https://doi.org/10.1016/j.jmmm.2015.10.034.

    Article  CAS  Google Scholar 

  64. Yamaguchi H. Engineering fluid mechanics. Berlin: Springer; 2008.

    Google Scholar 

  65. Batchelor GK. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech. 1977;83(1):97–117. https://doi.org/10.1017/S0022112077001062.

    Article  Google Scholar 

  66. Ansys Fluent User`s Guide, Release 16.2, 2016.

  67. Kim D, Kwon Y, Cho Y, Li C, Cheong S, Hwang Y, Lee J, Hong D, Moona S. Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions. Curr Appl Phys. 2009;9:119–23. https://doi.org/10.1016/j.cap.2008.12.047.

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marzie Babaie Rabiee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hekmat, M.H., Rabiee, M.B. & Ziarati, K.K. Numerical investigation of the mixed convection of a magnetic nanofluid in an annulus between two vertical concentric cylinders under the influence of a non-uniform external magnetic field. J Therm Anal Calorim 138, 1745–1759 (2019). https://doi.org/10.1007/s10973-019-08158-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08158-z

Keywords

Navigation