Skip to main content
Log in

The development of a new route to the synthesis of strontium orthosilicate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A new route including precipitation combined with calcination has been developed for the synthesis of strontium orthosilicate (Sr2SiO4) nano-sized particles. The stirring of the boiling aqua suspension prepared from hydrosilicagel derived from serpentine minerals ((Mg(Fe))6[Si4O10](OH)8), sodium hydroxide (NaOH) and strontium chloride (SrCl2) results in the precipitation of hydrated strontium silicate species whose dehydration is followed by their crystallization into strontium ortho- and metasilicate SrSiO3 on heating. The stirring time and sodium hydroxide concentration are the key parameters controlling strontium silicates formation. The influence of these parameters on the precipitates formation and their phase transformations at various temperatures has been studied by X-ray diffraction, thermal analyses and electron microscopy. The optimal parameters, namely the molar ratio of initial reagents, stirring time, the temperature and duration of heat treatment providing strontium orthosilicate synthesis, have been suggested. The average particle size of strontium orthosilicate synthesized by this method is 20–40 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Serpentinite is a rock largely composed of serpentine group minerals (Mg(Fe))6[Si4O10](OH)8.

References

  1. Barry TL. Fluorescence of Eu2+-activated phases in binary alkaline earth orthosilicate systems. J Electrochem Soc. 1968;115(11):1181–4. https://doi.org/10.1149/1.2410935.

    Article  CAS  Google Scholar 

  2. Shrivastava NK, Bapat MN, Khan M, Sivaraman S. Thermoluminescence and isothermal decay of Sr2SiO4:Dy. J Mater Sci. 1986;21(7):2540–6. https://doi.org/10.1007/bf01114304.

    Article  CAS  Google Scholar 

  3. Yang J, Zuo Y, Liu H, Su W. The luminescence characteristics of europium activated strontium silicate synthesized at high temperature and high pressure. J Mater Sci Lett. 1996;15(21):1891–4. https://doi.org/10.1007/bf00264088.

    Article  CAS  Google Scholar 

  4. Park JK, Lim MA, Kim CH, Park HD, Park JT, Choi SY. White light-emitting diodes of GaN-based Sr2SiO4: Eu and the luminescent properties. Appl Phys Lett. 2003;82(5):683–5. https://doi.org/10.1063/1.1544055.

    Article  CAS  Google Scholar 

  5. Barzowska J, Chruścińska A, Przegiętka K, Szczodrowski K. Dosimetric features of strontium orthosilicate (Sr2SiO4) doped with Eu 2+. Radiat Phys Chem. 2014;104:31–5. https://doi.org/10.1016/j.radphyschem.2014.05.043.

    Article  CAS  Google Scholar 

  6. Lee JH, Kim YJ. Photoluminescent properties of Sr2SiO4:Eu2+ phosphors prepared by solid-state reaction method. Mater Sci Eng B. 2008;146(1):99–102. https://doi.org/10.1016/j.mseb.2007.07.052.

    Article  CAS  Google Scholar 

  7. He H, Fu R, Zhang X, Song X, Zhao X, Pan Z. Photoluminescence spectra tuning of Eu2+ activated orthosilicate phosphors used for white light emitting diodes. J Mater Sci Mater Electron. 2009;20(5):433–8. https://doi.org/10.1007/s10854-008-9747-5.

    Article  CAS  Google Scholar 

  8. Hu Y, Zhuang W, Hao J, Huang X, He H. Preparation mechanism and luminescence of Sr2SiO4: Eu phosphor from (Sr, Eu) CO3@ SiO2 core-shell precursor. Open J Inorg Chem. 2012;2(1):6. https://doi.org/10.4236/ojic.2012.21002.

    Article  CAS  Google Scholar 

  9. Chang Y-L, Hsiang H-I, Lan F-T, Mei L-T, Yen F-S. Synthesis of Sr2SiO4 nanometer particles from the core–shell precursor of SrCO3/SiO2. J Alloys Compd. 2010;500(1):108–12. https://doi.org/10.1016/j.jallcom.2010.04.002.

    Article  CAS  Google Scholar 

  10. Guo H, Wang X, Zhang X, Tang Y, Chen L, Ma C. Effect of NH4F flux on structural and luminescent properties of Sr2SiO4: Eu2+ phosphors prepared by solid-state reaction method. J Electrochem Soc. 2010;157(8):J310–4. https://doi.org/10.1149/1.3454723.

    Article  CAS  Google Scholar 

  11. Hsu C-H, Jagannathan R, Lu C-H. Luminescent enhancement with tunable emission in Sr2SiO4: Eu2+ phosphors for white LEDs. Mater Sci Eng B. 2010;167(3):137–41. https://doi.org/10.1016/j.mseb.2010.01.045.

    Article  CAS  Google Scholar 

  12. Sahu IP. Orange-red emitting europium doped strontium ortho-silicate phosphor prepared by a solid state reaction method. Luminescence. 2017;32(3):364–74. https://doi.org/10.1002/bio.3188.

    Article  CAS  PubMed  Google Scholar 

  13. Chen H-Y, Weng M-H, Chang S-J, Yang R-Y. Preparation of Sr2SiO4:Eu3+ phosphors by microwave-assisted sintering and their luminescent properties. Ceram Int. 2012;38(1):125–30. https://doi.org/10.1016/j.ceramint.2011.06.044.

    Article  CAS  Google Scholar 

  14. Hsu W-H, Sheng M-H, Tsai M-S. Preparation of Eu-activated strontium orthosilicate (Sr1.95SiO4:Eu0.05) phosphor by a sol–gel method and its luminescent properties. J Alloys Compd. 2009;467(1):491–5. https://doi.org/10.1016/j.jallcom.2007.12.014.

    Article  CAS  Google Scholar 

  15. Kamei S, Kojima Y, Nishimiya N. Preparation and fluorescence properties of novel red-emitting Eu3+-activated amorphous alkaline earth silicate phosphors. J Lumin. 2010;130(11):2247–50. https://doi.org/10.1016/j.jlumin.2010.06.028.

    Article  CAS  Google Scholar 

  16. Dutczak D, Milbrat A, Katelnikovas A, Meijerink A, Ronda C, Jüstel T. Yellow persistent luminescence of Sr2SiO4:Eu2+, Dy3+. J Lumin. 2012;132(9):2398–403. https://doi.org/10.1016/j.jlumin.2012.03.055.

    Article  CAS  Google Scholar 

  17. Gupta SK, Mohapatra M, Kaity S, Natarajan V, Godbole SV. Structure and site selective luminescence of sol–gel derived Eu:Sr2SiO4. J Lumin. 2012;132(6):1329–38. https://doi.org/10.1016/j.jlumin.2012.01.011.

    Article  CAS  Google Scholar 

  18. Wu Y, Wang Y, He D, Fu M, Zhao Y, Li Y, et al. Synthesis and luminescence properties of Sr2SiO4: Eu3+, Dy3+ phosphors by the sol–gel method. J Nanosci Nanotechnol. 2011;11(11):9439–44. https://doi.org/10.1166/jnn.2011.5217.

    Article  CAS  PubMed  Google Scholar 

  19. Gupta SK, Bhide MK, Kadam RM, Natarajan V, Godbole SV. Nanorods of white light emitting Sr2SiO4:Eu2+: microemulsion-based synthesis, EPR, photoluminescence, and thermoluminescence studies. J Exp Nanosci. 2015;10(8):610–21. https://doi.org/10.1080/17458080.2013.858833.

    Article  CAS  Google Scholar 

  20. Gupta SK, Nigam S, Yadav AK, Mohapatra M, Jha SN, Majumder C, et al. An insight into local environment of lanthanide ions in Sr2SiO4: Ln (Ln = Sm, Eu and Dy). N J Chem. 2015;39(8):6531–9. https://doi.org/10.1039/C5NJ01191D.

    Article  CAS  Google Scholar 

  21. Gupta SK, Pathak N, Thulasidas SK, Natarajan V. Local site symmetry of Sm3+ in sol–gel derived α′-Sr2SiO4: probed by emission and fluorescence lifetime spectroscopy. J Lumin. 2016;169:669–73. https://doi.org/10.1016/j.jlumin.2014.10.009.

    Article  CAS  Google Scholar 

  22. Pan H, Li X, Zhang J, Guan L, Su H, Yang Z, et al. Crystal structure and luminescent properties of Sr2SiO4:Eu2+ phosphor prepared by sol–gel method. J Appl Biomater Funct Mater. 2016;14:62–7. https://doi.org/10.5301/jabfm.5000316.

    Article  CAS  Google Scholar 

  23. Tang J-Y, Zhong H, Hao L-Y, Xu X. Synthesis of the uniform hollow spherical Sr2SiO4:Eu2+ phosphors via an h-BN protective method. Opt Mater. 2013;35(12):2618–23. https://doi.org/10.1016/j.optmat.2013.07.032.

    Article  CAS  Google Scholar 

  24. Prathibha BS, Chandrashekara MS, Naghabhushan BM, Nagabhushan H. Photo and thermo luminescence studies of Sr2SiO4: Eu3+ phosphor. Int J Innov Eng Technol. 2015;6(2):190–200.

    Google Scholar 

  25. Verma D, Patel R. Low temperature solution combustion synthesis and luminescence properties of nanoparticle of Sr2SiO4: Dy 3 phosphors. Adv Appl Sci Res. 2015;6(6):89–94.

    CAS  Google Scholar 

  26. Venkataravanappa M, Nagabhushana H, Daruka Prasad B, Darshan GP, Basavaraj RB, Vijayakumar GR. Dual color emitting Eu doped strontium orthosilicate phosphors synthesized by bio-template assisted ultrasound for solid state lightning and display applications. Ultrason Sonochem. 2017;34:803–20. https://doi.org/10.1016/j.ultsonch.2016.07.004.

    Article  CAS  PubMed  Google Scholar 

  27. Zulumyan NO, Isaakyan AR, Oganesyan ZG. A new promising method for processing of serpentinites. Russ J Appl Chem. 2007;80(6):1020–2. https://doi.org/10.1134/s1070427207060353.

    Article  CAS  Google Scholar 

  28. Zulumyan N, Mirgorodski A, Isahakyan A, Beglaryan H. The mechanism of decomposition of serpentines from peridotites on heating. J Therm Anal Calorim. 2014;115(2):1003–12. https://doi.org/10.1007/s10973-013-3483-7.

    Article  CAS  Google Scholar 

  29. Zulumyan N, Isahakyan A, Beglaryan H, Melikyan S. A study of thermal decomposition of antigorite from dunite and lizardite from peridotite. J Therm Anal Calorim. 2018;131(2):1201–11. https://doi.org/10.1007/s10973-017-6705-6.

    Article  CAS  Google Scholar 

  30. Zulumyan NO, Isaakyan AR, Pirumyan PA, Beglaryan AA. The structural characteristics of amorphous silicas. Russ J Phys Chem A. 2010;84(4):700–2. https://doi.org/10.1134/S003602441004031X.

    Article  CAS  Google Scholar 

  31. Isahakyan AR, Beglaryan HA, Pirumyan PA, Papakhchyan LR, Zulumyan NH. An IR spectroscopic study of amorphous silicas. Russ J Phys Chem A. 2011;85(1):72–5. https://doi.org/10.1134/S0036024410121015.

    Article  CAS  Google Scholar 

  32. Carlson ET, Wells LS. Hydrothermal preparation of some strontium silicates. J Res Natl Bureau Stand. 1953;51(2):73–80.

    Article  CAS  Google Scholar 

  33. Felmy AR, Mason MJ, Gassman PL, McCready DE. The formation of Sr silicates at low temperature and the solubility product of tobermorite-like Sr5Si6O16(OH)2 5H2O. Am Mineral. 2003;88(1):73. https://doi.org/10.2138/am-2003-0109.

    Article  CAS  Google Scholar 

  34. Osamu Y, Yoshifumi I, Kiyoshi S. Formation of Sr2SiO4 and SrSiO3 from strontium silicate hydrate prepared by the alkoxy method. Bull Chem Soc Jpn. 1980;53(1):275–6. https://doi.org/10.1246/bcsj.53.275.

    Article  Google Scholar 

  35. Kirschenbaum H. The classical chemical analysis of silicate rocks: the old and the new. Washington, U.S. Geological survey bulletin 1547;1983.

  36. Langford JI, Wilson AJC. Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Crystallogr. 1978;11(2):102–13. https://doi.org/10.1107/S0021889878012844.

    Article  CAS  Google Scholar 

  37. Ropp RC. Group 14 (C, Si, Ge, Sn, and Pb) alkaline earth compounds. In: Ropp RC, editor. Encyclopedia of the alkaline earth compounds. Amsterdam: Elsevier; 2013. p. 351–480.

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the RA MES State Committee of Science, in the frames of the research Project No. 16YR-1D025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nshan Zulumyan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zulumyan, N., Isahakyan, A., Beglaryan, H. et al. The development of a new route to the synthesis of strontium orthosilicate. J Therm Anal Calorim 137, 1471–1481 (2019). https://doi.org/10.1007/s10973-019-08035-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08035-9

Keywords

Navigation