Skip to main content
Log in

Investigation of molecular interactions in binary mixture of dimethyl carbonate + N-methylformamide at T = (303.15, 308.15, 313.15 and 318.15) K

Thermo-physical and spectroscopic study

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Density (ρ) and speed of sound (u) of binary liquid mixtures of dimethyl carbonate and N-methylformamide have been determined at T = (303.15, 308.15, 313.15 and 318.15) K over the entire composition range. Experimental data are used to evaluate excess values of molar volume (\(V_{\text{m}}^{\text{E}}\)), isentropic compressibility (\(k_{\text{s}}^{\text{E}}\)), isothermal compressibility (\(k_{\text{T}}^{\text{E}}\)), intermolecular free length (\(L_{\text{f}}^{\text{E}}\)), acoustic impedance (\(Z^{\text{E}}\)) and ultrasonic speed (\(u^{\text{E}}\)). The VE data in the present investigation were analysed by using Prigogine–Flory–Patterson (PFP) theory. Partial and excess partial molar volumes (\(\bar{V}_{{{\text{m}},1}}\), \(\bar{V}_{{{\text{m}},2}}\)), (\(\bar{V}_{{{\text{m}},1}}^{\text{E}}\), \(\bar{V}_{{{\text{m}},2}}^{\text{E}}\)) and partial and excess partial molar volume of the components at infinite dilution (\(\overline{V}_{{{\text{m}},1}}^{\infty }\), \(\overline{V}_{{{\text{m}},2}}^{\infty }\)), (\(\overline{V}_{{{\text{m}},1}}^{{{\text{E}},\infty }}\), \(\overline{V}_{{{\text{m}},2}}^{{{\text{E}},\infty }}\)) at T = (303.15, 308.15, 313.15, 318.15) K have been calculated. The excess/deviation properties were fitted to Redlich–Kister equation to obtain their coefficients and standard deviations. The present investigation also comprises the acoustic nonlinearity parameter (B/A) in the mixtures and calculation of cohesive energy \(\Delta A\), Van der Wall’s constants (a, b) and distance of closest approach (d). Moreover, various semi-empirical relations of ultrasonic speed have been used to correlate the theoretical velocities. FT-IR spectra of pure components and their binaries have been measured at T = 298.15 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Satyanarayana GR, Bala Karuna Kumar D, Sujatha K, Lakshmanarao G, Rambabu C. Probing the intermolecular interactions in the binary liquid mixtures of o-chlorophenol with alkoxyethanols through ultrasonic, transport and FT-IR spectroscopic studies at different temperatures. J Mol Liq. 2016;216:526–37.

    Article  CAS  Google Scholar 

  2. Moreiras AF, Garcia J, Lugo L, Comunas MJP, Lopez ER, Fernandez J. Experimental densities and dynamic viscosities of organic carbonate + n-alkane or p-xylene systems at 298.15 K. Fluid Phase Equilib. 2003;204:233–43.

    Article  CAS  Google Scholar 

  3. Zafarani-Moattar MT, Izadi F. Effect of KCl on the volumetric and transport properties of aqueous tri-potassium citrate solutions at different temperatures. J Chem Thermodyn. 2011;43:552–61.

    Article  CAS  Google Scholar 

  4. Kannappan V, Hemalatha G. Ultrasonic studies on the molecular interaction of 1-chlorobenzotriazole with aromatic compounds in solution. Indian J Pure Appl Phys. 2005;43:849–53.

    CAS  Google Scholar 

  5. Zorebski E, Kostka BL. Thermodynamic and transport properties of (1, 2-ethanediol +1- nonanol) at temperatures (298.15 to 313.15) K. J Chem Thermodyn. 2008;41:197–204.

    Article  CAS  Google Scholar 

  6. Syamala V, Venkatramana L, Narasimha Rao C, Sivakumar K, Venkateswarlu P, Gardas RL. Effect of various substituents on benzene ring and their impact on volumetric, acoustic and transport properties of binary liquid mixtures with dimethylacetamide. Fluid Phase Equilib. 2015;397:68–80.

    Article  CAS  Google Scholar 

  7. Romanoa E, Trenzado JL, Gonzalez E, Matos JS, Segade L, Jimenez E. Thermophysical properties of four binary dimethyl carbonate + 1-alcohol systems at 288.15-313.15 K. Fluid Phase Equilib. 2003;211:219–40.

    Article  CAS  Google Scholar 

  8. Tobishima SI, Arakawa M, Yamaki JI. Electrolytic properties of LiClO4—propylene carbonate mixed with amide-solvents for lithium batteries. Electrochim Acta. 1988;33:239–44.

    Article  CAS  Google Scholar 

  9. Pacheco MA, Marshall CL. Review of dimethyl carbonate (DMC) manufacture and its characteristics as a fuel additive. Energy Fuels. 1997;11:2–29.

    Article  CAS  Google Scholar 

  10. Fang YJ, Qian JM. Isobaric vapor–liquid equilibria of binary mixtures containing the carbonate group −OCOO−. J Chem Eng Data. 2005;50:340–3.

    Article  CAS  Google Scholar 

  11. Sharma VK, Rajni D, Sharma D. Excess molar volumes and excess isentropic compressibilities of binary and ternary mixtures of o-chlorotoluene with cyclic ether and amides or cyclohexane at different temperatures. J Chem Thermodyn. 2014;78:241–53.

    Article  CAS  Google Scholar 

  12. Lugo L, Comunas MJP, Lopez ER, Fernandez J. (p, V m, T, x) measurements of dimethyl carbonate + octane binary mixtures: I. Experimental results, isothermal compressibilities, isobaric expansivities and internal pressures. Fluid Phase Equilib. 2001;186:235–55.

    Article  CAS  Google Scholar 

  13. Shin SH, Jeong IY, Jeong YS, Park SJ. Solid–liquid equilibria and the physical properties of binary systems of diphenyl carbonate, dimethyl carbonate, methyl phenyl carbonate, anisole, methanol and phenol. Fluid Phase Equilib. 2014;376:105–10.

    Article  CAS  Google Scholar 

  14. Iglesias-Otero MA, Troncoso J, Carballo E, Romani L. Density and refractive index for binary systems of the ionic liquid [Bmim][BF4] with methanol, 1,3-dichloropropane, and dimethyl carbonate. J Solution Chem. 2007;36:1219–30.

    Article  CAS  Google Scholar 

  15. Chen F, Yang Z, Chen Z, Hu J, Chen C, Cai J. Density, viscosity, speed of sound, excess property and bulk modulus of binary mixtures of γ-butyrolactone with acetonitrile, dimethyl carbonate, and tetrahydrofuran at temperatures (293.15 to 333.15) K. J Mol Liq. 2015;209:683–92.

    Article  CAS  Google Scholar 

  16. Riddick JA, Bunger WB, Sakano TK. Organic Solvents, Physical properties and methods of purification. 4th ed. New York: Wiley-Interscience; 1986.

    Google Scholar 

  17. Ren R, Zuo Y, Zhou Q, Zhang H, Zhang S. Density, excess molar volume and conductivity of binary mixtures of the ionic liquid 1,2-dimethyl-3-hexylimidazolium bis(trifluoromethylsulfonyl)imide and dimethyl carbonate. J Chem Eng Data. 2011;56:27–30.

    Article  CAS  Google Scholar 

  18. Rodriguez A, Canosa J, Tojo J. Physical properties of binary mixtures (dimethyl carbonate +alcohols) at several temperatures. J Chem Eng Data. 2001;46:1476–86.

    Article  CAS  Google Scholar 

  19. Pardo JM, Gonzalez-Salgado D, Tovar CA, Cerdeirina CA, Carballo E, Romani L. Comparative study of the thermodynamic behaviour of the binary mixtures dimethyl carbonate + (benzene, n-heptane, cyclohexane, or toluene). Can J Chem. 2002;80:370–8.

    Article  CAS  Google Scholar 

  20. Pardo JM, Tovar CA, Cerdeirina CA, Carballo E, Romani L. Excess quantities of dialkyl carbonate + cyclohexane mixtures at a variable temperature. Fluid Phase Equilib. 2001;179:151–63.

    Article  CAS  Google Scholar 

  21. Vranes M, Tot A, Zec N, Papovic S, Gadzuric S. Volumetric properties of binary mixtures of 1-butyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate with N-methylformamide, N-ethylformamide, N,N-dimethylformamide, N,N-dibutylformamide, and N,N-dimethylacetamide from (293.15 to 323.15) K. J Chem Eng Data. 2014;59:3372–9.

    Article  CAS  Google Scholar 

  22. Balaji R, Gowri Sankar M, Chandra Sekhar M, Chandra Shekar M. Thermodynamic properties of n-methylformamide + short carboxylic acids as a function of temperature. Karbala Int J Modern Sci. 2016;2:10–9.

    Article  Google Scholar 

  23. Sharma VK, Bhagour S. Molecular interactions in 1-ethyl-3-methylimidazolim tetrafluoroborate + amide mixtures: excess molar volumes, excess isentropic compressibilities and excess molar enthalpies. J Solution Chem. 2013;42:800–22.

    Article  CAS  Google Scholar 

  24. Rowlinson JS, Swinton FL. Liquid and liquid mixtures. 3rd ed. London: Butterworths; 1982. p. 16–7.

    Google Scholar 

  25. Hirschfelder JO, Curtis CF, Bird RB. Molecular theory of gases and liquids. New York: Wiley; 1964 (corrected printing).

    Google Scholar 

  26. Jyothirmai G, Nayeem SM, Khan I, Anjaneyulu C. Thermo-physicochemical investigation of molecular interactions in binary combination (dimethyl carbonate + methyl benzoate). J Therm Anal Calorim. 2018;132:693–707.

    Article  CAS  Google Scholar 

  27. Benson GC, Kiyohara OJ. Thermodynamic properties of some cycloalkane-cycloalkanol systems at 298.15 K. Chem Eng Data. 1976;21:362–5.

    Article  CAS  Google Scholar 

  28. Redlich O, Kister AT. Thermodynamic of non electrolyte solutions: algebraic representation of thermodynamic properties and the classification of solutions. Ind Eng Chem. 1948;40:345–8.

    Article  Google Scholar 

  29. Bakshi MS, Singh J, Kaur H, Ahmad ST, Kaur G. Thermodynamic behaviour of mixtures part-3 mixtures of acetonitrile with dimethylacetamide, dimethylsulphoxide, nitrobenzene and methanol at 25°C. J Chem Eng Data. 1996;41:1459–61.

    Article  CAS  Google Scholar 

  30. Garcia B, Alcalde R, Leal JM, Matos JS. Formamide–(C1–C5) alkan-1-ols solvent systems. J Chem Soc, Faraday Trans. 1996;92:3347–52.

    Article  CAS  Google Scholar 

  31. Sankar MG, Ponneri V, Kumar KS, Sakamuri S. Molecular interactions between amine and cyclic ketones at different temperatures. J Therm Anal Calorim. 2014;115:1821–7.

    Article  CAS  Google Scholar 

  32. Nain AK. Densities, ultrasonic speeds, viscosities and excess properties of binary mixtures of methyl methacrylate with N,N-dimethylformamide and N,N-dimethylacetamide at different temperatures. J Chem Thermodyn. 2013;60:105–16.

    Article  CAS  Google Scholar 

  33. Kondaiah M, Sreekanth K, Sravana Kumar D, Nayeem SM, Krishna Rao D. Densities, viscosities, and excess properties for binary mixtures of ethylene glycol with amides at 308.15 K. J Therm Anal Calorim. 2014;118:475–83.

    Article  CAS  Google Scholar 

  34. Rajagopal K, Chenthilnath S. Excess thermodynamic studies of binary liquid mixtures of 2-methyl-2-propanol with ketones. Indian J Pure Appl Phys. 2010;48:326–33.

    CAS  Google Scholar 

  35. Nayeem SM, Kondaiah M, Sreekanth K, Krishna Rao D. Acoustic and volumetric investigations in aromatic, cyclic and aliphatic ketones with dimethyl sulphoxide at 308.15 K. Arab J Chem. 2015. https://doi.org/10.1016/j.arabjc.2015.08.005.

    Article  Google Scholar 

  36. Nam-Tran HA. New model for evaluating interactions in liquids. J Phys Chem. 1994;98:5362–7.

    Article  CAS  Google Scholar 

  37. Balaji R, Gowri Sankar M, Chandra Sekhar M, Chandra Shekar M. Thermophysical and spectroscopic properties of binary liquid systems: acetophenone/cyclopentanone/cyclohexanone with N-methylformamide. Phys Chem Liquids. 2015. https://doi.org/10.1080/00319104.2015.1109996.

    Article  Google Scholar 

  38. Aroni F, Kelarakis A, Havredaki V. Volumetric behavior of a bolaamphiphile in different amides–water and ethylene glycol–water mixtures. J Colloid Interface Sci. 2005;292:236–43.

    Article  CAS  PubMed  Google Scholar 

  39. Umadevi P, Rambabu K, Rao MN, Rao KS, Rambabu C. Densities, adiabatic compressibility, free-length, viscosities and excess volumes of P-cresol(1) + dimethyl sulfoxide (2), + dimethyl formamide (2), and + 1,4-dioxane at 303.15–318.15 K. Phys Chem Liq. 1995;30:29–46.

    Article  CAS  Google Scholar 

  40. Ali A, Nain AK. Ultrsonic and volumetric study of binary mixtures of benzyl alcohol with amides. Bull Chem Soc Jpn. 2002;75:681–7.

    Article  CAS  Google Scholar 

  41. Venkatramana L, Sreenivasulu K, Sivakumar K, Reddy KD. Thermodynamic properties of binary mixtures containing 1-alkanols. J Therm Anal Calorim. 2014;115:1829–34.

    Article  CAS  Google Scholar 

  42. Rastogi M, Awasthi A, Gupta M, Shukla JP. Ultrasonic investigations of X… HO bond complexes. Indian J Pure Appl Phys. 2002;40:256–63.

    CAS  Google Scholar 

  43. Baragi JG, Mutalik VK, Mekali SB. Molecular interaction studies in mixtures of methylcyclohexane with alkanes: a theoretical approach. Int J Pharm Bio Sci. 2013;3:185–97.

    CAS  Google Scholar 

  44. Nain AK. Densities and volumetric properties of (acetonitrile + an amide) binary mixtures at temperatures between 293.15 K and 318.15 K. J Chem Thermodyn. 2006;38:1362–70.

    Article  CAS  Google Scholar 

  45. Flory PJ. Statistical thermodynamics of liquid mixtures. J Am Chem Soc. 1965;87:1833–8.

    Article  CAS  Google Scholar 

  46. Abe A, Flory PJ. The thermodynamic properties of mixtures of small, nonpolar molecules. J Am Chem Soc. 1965;87:1838–46.

    Article  CAS  Google Scholar 

  47. Iloukhani H, Almasi M. Densities and excess molar volumes of binary and ternary mixtures containing acetonitrile + acetophenone + 1,2-pentanediol: experimental data, correlation and prediction by PFP theory and ERAS model. J Solution Chem. 2011;40:284–98.

    Article  CAS  Google Scholar 

  48. Letcher TM, Baxter RC. Application of the Prigogine–Flory–Patterson theory part III. Mixtures of a bicyclic compound, benzene, cyclohexane, n-hexane with a cycloalkane, cyclohexene, a cycloalkadiene and benzene. J Solution Chem. 1989;18:89–97.

    Article  CAS  Google Scholar 

  49. Fort RJ, Moore WR. Adiabatic compressibilities of binary liquid mixtures. J Trans Faraday Soc. 1965;61:2102–11.

    Article  CAS  Google Scholar 

  50. Comelli F, Ottani S, Francesconi R, Castellari C. Densities, viscosities, and refractive indices of binary mixtures containing n-hexane + components of pine resins and essential oils at 298.15 K. J Chem Eng Data. 2002;47:93–7.

    Article  CAS  Google Scholar 

  51. Ali A, Nabi F, Tariq M. Volumetric, viscometric, ultrasonic, and refractive index properties of liquid mixtures of benzene with industrially important monomers at different temperatures. Int J Thermophys. 2009;30:464–74.

    Article  CAS  Google Scholar 

  52. Prakash Dubey G, Kumar K. Studies of thermodynamic, thermophysical and partial molar properties of liquid mixtures of diethylenetriamine with alcohols at 293.15 to 313.15 K. J Mol Liq. 2013;180:164–71.

    Article  CAS  Google Scholar 

  53. Govardhana Rao S, Madhu Mohan T, Vijaya Krishna T, Srinivasa Krishna T, Subba Rao B. Density, refractive index, and speed of sound of the binary mixture of 1-butyl-3-methylimidazolium tetrafluoroborate + n-vinyl-2-pyrrolidinone from t = (298.15 to 323.15) K at atmospheric pressure. J Chem Eng Data. 2015;60:886–94.

    Article  CAS  Google Scholar 

  54. Bhalodia J, Sharma S. Volumetric, refractive and FT-IR behaviour of β-pinene with o, m, p-cresol at 303.15, 308.15 and 313.15 K. J Mol Liq. 2014;193:249–55.

    Article  CAS  Google Scholar 

  55. Wisniak J, Cortez G, Peralta RD, Infante R, Elizalde LE, Amaro TA, Garcia O, Soto H. Density, excess volume, and excess coefficient of thermal expansion of the binary systems of dimethyl carbonate with butyl methacrylate, allyl methacrylate, styrene, and vinyl acetate at T = (293.15, 303.15, 313.15) K. J Chem Thermodyn. 2008;40:1671–83.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors, Sk. Beebi, wishes to thank the Department of Chemistry and Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, for providing laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sk. Beebi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 96 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beebi, S., Nayeem, S.M. & Rambabu, C. Investigation of molecular interactions in binary mixture of dimethyl carbonate + N-methylformamide at T = (303.15, 308.15, 313.15 and 318.15) K. J Therm Anal Calorim 135, 3387–3399 (2019). https://doi.org/10.1007/s10973-018-7574-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7574-3

Keywords

Navigation