Skip to main content
Log in

A concise review on the role of nanoparticles upon the productivity of solar desalination systems

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In recent years, nanofluids have been widely used to improve the performance of various energy systems due to their favourable thermo-physical and optical characteristics. In particular, solar distillation, as an affordable and reliable technique to provide freshwater, has benefited from nanofluid technology. This article performs a review of the literature on the implementation of nanofluid technology in active and passive solar distillation systems. The progress made and the existing challenges are discussed, and some conclusions and suggestions are made for future research. The review indicates that the daily productivities of solar distillation systems enhance by using nanofluid and increasing the volume fraction of nanoparticles. However, long-term operational stability and life cycle assessment remain critical issues. These factors should be considered for future research in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

E :

Energy (J kg−1)

F :

Force (N)

g :

Gravitational acceleration (m s−2)

k :

Thermal conductivity (W m−1 °C)

p :

Pressure (Pa)

S h :

Energy source term (kg m−1 s)

S α :

Mass source term (kg m−3 s)

t :

Time (s)

T :

Temperature (°C)

V :

Velocity (m s−1)

eff:

Effective

i :

ith phase

v:

Vapour

α :

Volume/void fraction (−)

μ :

Dynamic viscosity (kg m−1 s)

ρ :

Density of the fluid (kg m−3)

φ :

Solid volume fraction of nanoparticles (−)

CFD:

Computational fluid dynamics

VOF:

Volume of fluid

References

  1. Kabeel AE. Performance of solar still with a concave wick evaporation surface. Energy. 2009;34:1504–9.

    Article  Google Scholar 

  2. Tedesco M, Hamelers HVM, Biesheuvel PM. Nernst–Planck transport theory for (reverse) electrodialysis: I. Effect of co-ion transport through the membranes. J Membr Sci. 2016;510:370–81.

    Article  CAS  Google Scholar 

  3. Gökçek M. Integration of hybrid power (wind-photovoltaic-diesel-battery) and seawater reverse osmosis systems for small-scale desalination applications. Desalination. 2018;435:210–20.

    Article  CAS  Google Scholar 

  4. Tiwari GN, Yadav YP, Eames PC, Norton B. Solar distillation systems: the state-of-the-art in design development and performance analysis. Renew Energy. 1994;5:509–16.

    Article  CAS  Google Scholar 

  5. Rahbar N, Gharaiian A, Rashidi S. Exergy and economic analysis for a double slope solar still equipped by thermoelectric heating modules-an experimental investigation. Desalination. 2017;420:106–13.

    Article  CAS  Google Scholar 

  6. Rashidi S, Bovand M, Esfahani JA. Optimization of partitioning inside a single slope solar still for performance improvement. Desalination. 2016;395:79–91.

    Article  CAS  Google Scholar 

  7. Rashidi S, Esfahani JA, Rahbar N. Partitioning of solar still for performance recovery: experimental and numerical investigations with cost analysis. Sol Energy. 2017;153:41–50.

    Article  Google Scholar 

  8. Rashidi S, Esfahani JA. Spatial entropy generation analysis for the design improvement of a single slope solar still. Environ Prog Sustain Energy. 2017. https://doi.org/10.1002/ep.12719.

    Article  Google Scholar 

  9. Rashidi S, Rahbar N, Valipour MS, Esfahani JA. Enhancement of solar still by reticular porous media: experimental investigation with exergy and economic analysis. Appl Therm Eng. 2018;130:1341–8.

    Article  Google Scholar 

  10. Manikandan V, Shanmugasundaram K, Shanmugan S, Janarthanan B, Chandrasekaran J. Wick type solar stills: a review. Renew Sustain Energy Rev. 2013;20:322–35.

    Article  Google Scholar 

  11. Kabeel AE, Omara ZM, Essa FA, Abdullah AS. Solar still with condenser—a detailed review. Renew Sustain Energy Rev. 2016;59:839–57.

    Article  Google Scholar 

  12. Sathyamurthy R, El-Agouz SA, Nagarajan PK, Subramani J, Arunkumar T, Mageshbabu D, Madhu B, Bharathwaaj R, Prakash N. A Review of integrating solar collectors to solar still. Renew Sustain Energy Rev. 2017;77:1069–97.

    Article  Google Scholar 

  13. Rai SN, Tiwari GN. Single basin solar still coupled with flat plate collector. Energy Convers Manag. 1983;23:145–9.

    Article  Google Scholar 

  14. Omara ZM, Abdullah AS, Kabeel AE, Essa FA. The cooling techniques of the solar stills’ glass covers—a review. Renew Sustain Energy Rev. 2017;78:176–93.

    Article  Google Scholar 

  15. Tiwari GN, Rao VSVB. Transient performance of a single basin solar still with water flowing over the glass cover. Desalination. 1984;49:231–41.

    Article  Google Scholar 

  16. Shukla A, Kant K, Sharma A. Solar still with latent heat energy storage: a review. Innov Food Sci Emerg Technol. 2017;41:34–46.

    Article  Google Scholar 

  17. Omara ZM, Kabeel AE, Abdullah AS. A review of solar still performance with reflectors. Renew Sustain Energy Rev. 2017;68:638–49.

    Article  Google Scholar 

  18. Tanaka H. Experimental study of a basin type solar still with internal and external reflectors in winter. Desalination. 2009;249:130–4.

    Article  CAS  Google Scholar 

  19. Valipour MS, Rashidi S, Masoodi R. Magnetohydrodynamics flow and heat transfer around a solid cylinder wrapped with a porous ring. J Heat Transf 2014;136:062601–9.

  20. Rashidi A, Maghiar M, Sigari MH. Geometry capturing for labeling and mapping built infrastructure: An overview of technologies. Iran J Sci Technol-Trans Civil Eng 2017;41(4).

  21. Jazebi F, Rashidi A. An automated procedure for selecting project managers in construction firms. J Civil Eng Manag 2013;19(1).

  22. Shirvan KM, Mamourian M, Mirzakhanlari S, Ellahi R. Two phase simulation and sensitivity analysis of effective parameters on combined heat transfer and pressure drop in a solar heat exchanger filled with nanofluid by RSM. J Mol Liq. 2016;220:888–901.

    Article  CAS  Google Scholar 

  23. Shirvan KM, Mamourian M, Mirzakhanlari S, Ellahi R, Vafai K. Numerical investigation and sensitivity analysis of effective parameters on combined heat transfer performance in a porous solar cavity receiver by response surface methodology. Int J Heat Mass Transf. 2017;105:811–25.

    Article  CAS  Google Scholar 

  24. Shirvan KM, Mamourian M, Mirzakhanlari S, Rahimi AB, Ellahi R. Numerical study of surface radiation and combined natural convection heat transfer in a solar cavity receiver. Int J Numer Methods Heat Fluid Flow. 2017;27:2385–99.

    Article  Google Scholar 

  25. Hassn M, Zeeshan A, Majeed A, Ellahi R. Particle shape effects on ferrofuids flow and heat transfer under influence of low oscillating magnetic field. J Magn Magn Mater. 2017;443:36–44.

    Article  CAS  Google Scholar 

  26. Esfahani JA, Akbarzadeh M, Rashidi S, Rosen MA, Ellahi R. Influences of wavy wall and nanoparticles on entropy generation in a plate heat exchanger. Int J Heat Mass Transf. 2017;109:1162–71.

    Article  CAS  Google Scholar 

  27. Ellahi R, Tariq MH, Hassan M, Vafai K. On boundary layer magnetic flow of nano-Ferroliquid under the influence of low oscillating over stretchable rotating disk. J Mol Liq. 2017;229:339–45.

    Article  CAS  Google Scholar 

  28. Ellahi R. Special issue on recent developments of nanofluids. Appl Sci. 2018;8:192.

    Article  Google Scholar 

  29. Ijaz N, Zeeshan A, Bhatti AM, Ellahi R. Analytical study on liquid-solid particles interaction in the presence of heat and mass transfer through a wavy channel. J Mol Liq. 2018;250:80–7.

    Article  CAS  Google Scholar 

  30. Zeeshan A, Shehzad N, Ellahi R. Analysis of activation energy in Couette–Poiseuille flow of nanofluid in the presence of chemical reaction and convective boundary conditions. Results Phys. 2018;8:502–12.

    Article  Google Scholar 

  31. Yazdanifard F, Ameri M, Ebrahimnia-Bajestan E. Performance of nanofluid-based photovoltaic/thermal systems: a review. Renew Sustain Energy Rev. 2017;76:323–52.

    Article  CAS  Google Scholar 

  32. Rashidi S, Mahian O, Languri EM. Applications of nanofluids in condensing and evaporating systems. J Therm Anal Calorim. 2017;131:2027–39.

    Article  CAS  Google Scholar 

  33. Bahiraei M, Rahmani R, Yaghoobi A, Khodabandeh E, Mashayekhi R, Amani M. Recent research contributions concerning use of nanofluids in heat exchangers: a critical review. Renew Sustain Energy Rev. 2018;133:137–59.

    CAS  Google Scholar 

  34. Bhattad A, Sarkar J, Ghosh P. Improving the performance of refrigeration systems by using nanofluids: a comprehensive review. Renew Sustain Energy Rev. 2018;82:3656–69.

    Article  CAS  Google Scholar 

  35. Raj P, Subudhi S. A review of studies using nanofluids in flat-plate and direct absorption solar collectors. Renew Sustain Energy Rev. 2018;84:54–74.

    Article  CAS  Google Scholar 

  36. Bellos E, Tzivanidis C. A review of concentrating solar thermal collectors with and without nanofluids. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7183-1.

    Article  Google Scholar 

  37. Rashidi S, Eskandarian M, Mahian O, Poncet S. Combination of nanofluid and inserts for heat transfer enhancement. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7070-9.

    Article  Google Scholar 

  38. Mahian O, Kianifar A, Kalogirou SA, Pop I, Wongwises S. A review of the applications of nanofluids in solar energy. Int J Heat Mass Transf. 2013;57:582–94.

    Article  CAS  Google Scholar 

  39. Kasaeian A, Toghi Eshghi A, Sameti M. A review on the applications of nanofluids in solar energy systems. Renew Sustain Energy Rev. 2015;43:584–98.

    Article  CAS  Google Scholar 

  40. Rahbar N, Esfahani JA. Estimation of convective heat transfer coefficient in a single-slope solar still: a numerical study. Desalin Water Treat. 2012;50:387–96.

    Article  CAS  Google Scholar 

  41. Rahbar N, Esfahani JA. Productivity estimation of a single-slope solar still: theoretical and numerical analysis. Energy. 2013;49:289–97.

    Article  Google Scholar 

  42. Rahbar N, Esfahani JA, Fotouhi-Bafghi E. Estimation of convective heat transfer coefficient and water-productivity in a tubular solar still—CFD simulation and theoretical analysis. Sol Energy. 2015;113:313–23.

    Article  Google Scholar 

  43. Sun D, Xu J, Chen Q. Modeling of the evaporation and condensation phase-change problems with FLUENT. Numer Heat Transf Part B. 2014;66:326–42.

    Article  Google Scholar 

  44. Hirt CW, Nichols BD. Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys. 1981;39:201–25.

    Article  Google Scholar 

  45. Albojamal A, Vafai K. Analysis of single phase, discrete and mixture models, in predicting nanofluid transport. Int J Heat Mass Transf. 2017;114:225–37.

    Article  CAS  Google Scholar 

  46. Bovand M, Rashidi S, Esfahani JA. Enhancement of heat transfer by nanofluids and orientations of the equilateral triangular obstacle. Energy Convers Manag. 2015;97:212–23.

    Article  CAS  Google Scholar 

  47. Brackbill JU, Kothe DB, Zemach C. A continuum method for modeling surface tension. J Comput Phys. 1992;100:335–54.

    Article  CAS  Google Scholar 

  48. Eastman J, Choi U, Li S, Thompson L, Lee S. Enhanced thermal conductivity through the development of nanofluids. In: MRS Proceedings, Cambridge Univ Press, 1996. P. 3.

  49. Yang Y, Zhang ZG, Grulke EA, Anderson WB, Wu G. Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow. Int J Heat Mass Transf. 2005;48:1107–16.

    Article  CAS  Google Scholar 

  50. Witharana S, Palabiyik I, Musina Z, Ding Y. Stability of glycol nanofluids—the theory and experiment. Powder Technol. 2013;239:72–7.

    Article  CAS  Google Scholar 

  51. Sadri R, Ahmadi G, Togun H, Dahari M, Kazi SN, Sadeghinezhad E, Zubir N. An experimental study on thermal conductivity and viscosity of nanofluids containing carbon nanotubes. Nanoscale Res Lett. 2014;9:1–16.

    Article  CAS  Google Scholar 

  52. Rativa D, Gomez-Malgao LA. Solar radiation absorption of nanofluids containing metallic nanoellipsoids. Sol Energy. 2015;118:419–25.

    Article  CAS  Google Scholar 

  53. Yu W, France DM, Routbort JL, Choi SU. Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf Eng. 2008;29:432–60.

    Article  CAS  Google Scholar 

  54. Shahrul IM, Mahbubul IM, Khaleduzzaman SS, Saidur R, Sabri MFM. A comparative review on the specific heat of nanofluids for energy perspective. Renew Sustain Energy Rev. 2014;38:88–98.

    Article  CAS  Google Scholar 

  55. Ashrafmansouri S, Esfahany MN. Mass transfer in nanofluids—a review. Int J Therm Sci. 2014;82:84–99.

    Article  CAS  Google Scholar 

  56. Elango T, Kannan A, Murugavel KK. Performance study on single basin single slope solar still with different water nanofluids. Desalination. 2015;360:45–51.

    Article  CAS  Google Scholar 

  57. Sahota L, Tiwari GN. Effect of Al2O3 nanoparticles on the performance of passive double slope solar still. Sol Energy. 2016;130:260–72.

    Article  CAS  Google Scholar 

  58. Sahota L, Tiwari GN. Effect of nanofluids on the performance of passive double slope solar still: a comparative study using characteristic curve. Desalination. 2016;388:9–21.

    Article  CAS  Google Scholar 

  59. Sahota L, Tiwari GN. Effect of Al2O3 and TiO2-water based nanofluids on heat transfer coefficients of passive double slope solar still. Int J Energy Environ Econ. 2016;24:1–18.

    Google Scholar 

  60. Sahota L, Tiwari GN. Exergoeconomic and enviroeconomic analyses of hybrid double slope solar still loaded with nanofluids. Energy Convers Manag. 2017;148:413–30.

    Article  CAS  Google Scholar 

  61. Chen W, Zou C, Li X, Li L. Experimental investigation of SiC nanofluids for solar distillation system: stability, optical properties and thermal conductivity with saline water-based fluid. Int J Heat Mass Transf. 2017;107:264–70.

    Article  CAS  Google Scholar 

  62. Kabeel AE, Omara ZM, Essa FA, Abdullah AS, Arunkumar T, Sathyamurthy R. Augmentation of a solar still distillate yield via absorber plate coated with black nanoparticles. Alex Eng J. 2017;56:433–8.

    Article  Google Scholar 

  63. Taamneh Y. Influence of Jordanian zeolite on the performance of solar still-experimental and CFD simulation studies. Water Sci Technol Water Supply. 2016;16:1–10.

    Article  CAS  Google Scholar 

  64. Rashidi S, Akar S, Bovand M, Ellahi R. Volume of fluid model to simulate the nanofluid flow and entropy generation in a single slope solar still. Renew Energy. 2018;115:400–10.

    Article  CAS  Google Scholar 

  65. Bejan A. Entropy generation through heat and fluid flow. New York: Wiley; 1982.

    Google Scholar 

  66. Rashidi S, Bovand M, Rahbar N, Esfahani JA. Steps optimization and productivity enhancement in a nanofluid cascade solar still. Renew Energy. 2018;118:536–45.

    Article  Google Scholar 

  67. Kabeel AE, Omara ZM, Essa FA. Improving the performance of solar still by using nanofluids and providing vacuum. Energy Convers Manag. 2014;86:268–74.

    Article  CAS  Google Scholar 

  68. Kabeel AE, Omara ZM, Essa FA. Enhancement of modified solar still integrated with external condenser using nanofluids: an experimental approach. Energy Convers Manag. 2014;78:493–8.

    Article  CAS  Google Scholar 

  69. Kabeel AE, Omara ZM, Essa FA. Numerical investigation of modified solar still using nanofluids and external condenser. J Taiwan Inst Chem Eng. 2017;75:77–86.

    Article  CAS  Google Scholar 

  70. Sharshir SW, Peng G, Wu L, Yang N, Essa FA, Mohamed SIT, Kabeel AE, Elsheikh AH. Enhancing the solar still performance using nanofluids and glass cover cooling: experimental study. Appl Therm Eng. 2017;113:684–93.

    Article  CAS  Google Scholar 

  71. El-Said EMS, Kabeel AE, Abdulaziz M. Theoretical study on hybrid desalination system coupled with nano-fluid solar heater for arid states. Desalination. 2016;386:84–98.

    Article  CAS  Google Scholar 

  72. Mahian O, Kianifar A, Heris SZ, Wen D, Sahin AZ, Wongwises S. Nanofluids effects on the evaporation rate in a solar still equipped with a heat exchanger. Nano Energy. 2017;36:134–55.

    Article  CAS  Google Scholar 

  73. Sahota L, Shyam, Tiwari GN. Analytical characteristic equation of nanofluid loaded active double slope solar still coupled with helically coiled heat exchanger. Energy Convers Manag. 2017;135:308–26.

    Article  CAS  Google Scholar 

  74. Sahota L, Shyam, Tiwari GN. Energy matrices, enviroeconomic and exergoeconomic analysis of passive double slope solar still with water based nanofluids. Desalination. 2017;409:66–79.

    Article  CAS  Google Scholar 

  75. Shanmugan S, Palani S, Janarthanan B, Abdullah AS, Arunkumar T, Sathyamurthy R. Productivity enhancement of solar still by PCM and Nanoparticles miscellaneous basin absorbing materials. Desalination. 2017;433:186–98.

    Article  CAS  Google Scholar 

  76. Sharshir SW, Peng G, Wu L, Essa FA, Kabeel AE, Yang N. The effects of flake graphite nanoparticles, phase change material, and film cooling on the solar still performance. Appl Energy. 2017;191:358–66.

    Article  CAS  Google Scholar 

  77. Celata GP, Annibale FD, Mariani A. Nanofluid flow effects on metal surfaces. Energia Ambiente e Innovazione. 2011;4–5:94–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saman Rashidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashidi, S., Karimi, N., Mahian, O. et al. A concise review on the role of nanoparticles upon the productivity of solar desalination systems. J Therm Anal Calorim 135, 1145–1159 (2019). https://doi.org/10.1007/s10973-018-7500-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7500-8

Keywords

Navigation