Skip to main content
Log in

Facile surface modification of ceramic membranes using binary TiO2/SiO2 for achieving fouling resistance and photocatalytic degradation

  • Original Paper: Sol-gel and hybrid materials with surface modification for applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Inorganic surface modification was carried out using a TiO2/SiO2 sol–gel process to enhance photocatalytic activity and to mitigate fouling of alumina microfiltration membranes. Pristine alumina membranes were subjected to TiO2/SiO2 coating with varied TiO2 mole percentages. Upon the formation of the TiO2/SiO2 layer, small changes in the surface morphology, pore size, and specific surface area were detected. Particularly, as the pore size decreased with the decrease in TiO2 content, the pure water permeability also gradually diminished. By examining the binary TiO2/SiO2 compositions, the optimized conditions demonstrating both higher flux performance and greater photocatalytic activity were determined. Thus, the inorganic surface modification by TiO2/SiO2 coating could contribute significantly to the realization of self-cleaning ceramic membranes while extending the membrane cleaning cycle and accelerating productivity.

Highlights

  • Ceramic microfiltration (MF) membranes are modified using TiO2/SiO2 sol–gel process.

  • Both fouling resistance and photocatalytic activity are successfully obtained while varying binary TiO2/SiO2 compositions.

  • The optimized conditions were found at 50 mol% TiO2 (the second highest flux performance and greater photocatalytic degradation ratio).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kumar SM, Madhu G, Roy S (2007) Sep Purif Technol 57:25

    Article  Google Scholar 

  2. Kim J, Van der Bruggen B (2010) Environ Pollut 158:2335. https://doi.org/10.1016/j.envpol.2010.03.024

    Article  Google Scholar 

  3. Krstić DM, Antov MG, Peričin DM, Höflinger W, Tekić MN (2007) Biochem Eng J 33:10. https://doi.org/10.1016/j.bej.2006.08.016

    Article  Google Scholar 

  4. Finley J (2005) Filtr Sep 42:34

    Article  Google Scholar 

  5. Majewska-Nowak KM (2010) Desalination 254:185

    Article  Google Scholar 

  6. Suresh K, Pugazhenthi G (2014) Desalin Water Treat 57:1927. https://doi.org/10.1080/19443994.2014.979445

    Article  Google Scholar 

  7. DeFriend KA, Wiesner MR, Barron AR (2003) J Membr Sci 224:11

    Article  Google Scholar 

  8. Benito J, Conesa A, Rubio F, Rodriguez M (2005) J Eur Ceram Soc 25:1895

    Article  Google Scholar 

  9. Van Gestel T, Sebold D, Kruidhof H, Bouwmeester HJ (2008) J Membr Sci 318:413

    Article  Google Scholar 

  10. Zhou M, Roualdès S, Ayral A (2015) Eur Phys J Spec Top 224:1871

    Article  Google Scholar 

  11. Nwogu NC, Kajama M, Gobina E (2015) Compos Struct 134:1044

    Article  Google Scholar 

  12. Fukushima M, Zhou Y, Yoshizawa Y-i (2009) J Membr Sci 339:78

    Article  Google Scholar 

  13. Maghsoudi H (2016) Sep Purif Rev 45:169

    Article  Google Scholar 

  14. Verweij H (2003) J Mater Sci 38:4677

    Article  Google Scholar 

  15. Cot L, Ayral A, Durand J et al. (2000) Solid State Sci 2:313

    Article  Google Scholar 

  16. Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes AM (2008) Nature 452:301. https://doi.org/10.1038/nature06599

    Article  Google Scholar 

  17. Vu A, Darvishmanesh S, Marroquin M, Husson SM, Wickramasinghe SR (2016) Sep Sci Technol 51:1370. https://doi.org/10.1080/01496395.2016.1150295

    Article  Google Scholar 

  18. Madaeni SS, Mohamamdi T, Moghadam MK (2001) Desalination 134:77

    Article  Google Scholar 

  19. Rana D, Matsuura T (2010) Chem Rev 110:2448

    Article  Google Scholar 

  20. Wang F, Lee J, Ha J-H, Song I-H (2017) Mater Lett 191:200

    Article  Google Scholar 

  21. Klare M, Scheen J, Vogelsang K, Jacobs H, Broekaert JAC (2000) Chemosphere 41:353. https://doi.org/10.1016/S0045-6535(99)00447-6

    Article  Google Scholar 

  22. Cermenati L, Dondi D, Fagnoni M, Albini A (2003) Tetrahedron 59:6409. https://doi.org/10.1016/S0040-4020(03)01092-5

    Article  Google Scholar 

  23. Alaton IA, Balcioglu IA (2001) J Photochem Photobiol 141:247. https://doi.org/10.1016/S1010-6030(01)00440-3

    Article  Google Scholar 

  24. Ong CB, Ng LY, Mohammad AW (2018) Renew Sustain Energy Rev 81:536. https://doi.org/10.1016/j.rser.2017.08.020

    Article  Google Scholar 

  25. Ishimaki K, Uchiyama T, Okazaki M, Lu D, Uchimoto Y, Maeda K (2018) Bull Chem Soc Jpn 91:486. https://doi.org/10.1246/bcsj.20170373

    Article  Google Scholar 

  26. Su T, Shao Q, Qin Z, Guo Z, Wu Z (2018) ACS Catal 8:2253. https://doi.org/10.1021/acscatal.7b03437

    Article  Google Scholar 

  27. Li H, Li J, Ai Z, Jia F, Zhang L (2018) Angew Chem Int Ed Engl 57:122. https://doi.org/10.1002/anie.201705628

    Article  Google Scholar 

  28. Ha J-H, Bukhari SZA, Lee J, Song I-H, Park C (2016) Ceram Int 42:13796

    Article  Google Scholar 

  29. Lee J, Ha J-H, Song I-H (2016) Sep Sci Technol 51:2420

    Article  Google Scholar 

  30. Lee J, Ha J-H, Song I-H (2017) Desalination Water Treat 88:16

    Article  Google Scholar 

  31. Lee J, Ha J-H, Song I-H, Shin DW (2017) J Ceram Soc Jpn 125:899

    Article  Google Scholar 

  32. Fujishima A, Zhang X, Tryk DA (2008) Surf Sci Rep 63:515

    Article  Google Scholar 

  33. Erdural B, Bolukbasi U, Karakas G (2014) J Photochem Photobiol 283:29. https://doi.org/10.1016/j.jphotochem.2014.03.016

    Article  Google Scholar 

  34. Wang P, Meng J, Xu M et al. (2015) J Membr Sci 492:547. https://doi.org/10.1016/j.memsci.2015.06.024

    Article  Google Scholar 

  35. Guan K (2005) Surf Coat Technol 191:155

    Article  Google Scholar 

  36. Wang R, Hashimoto K, Fujishima A et al. (1997) Nature 388:431

    Article  Google Scholar 

  37. Hashino M, Hirami K, Katagiri T et al. (2011) J Membr Sci 379:233. https://doi.org/10.1016/j.memsci.2011.05.068

    Article  Google Scholar 

  38. Yuan W, Zydney AL (1999) J Membr Sci 157:1. https://doi.org/10.1016/S0376-7388(98)00329-9

    Article  Google Scholar 

  39. Athanasekou CP, Moustakas NG, Morales-Torres S et al (2015) Appl Catal B: Environ 178:12. https://doi.org/10.1016/j.apcatb.2014.11.021

    Article  Google Scholar 

  40. Momeni M, Saghafian H, Golestani-Fard F, Barati N, Khanahmadi A (2017) Appl Surf Sci 392:80. https://doi.org/10.1016/j.apsusc.2016.08.165

    Article  Google Scholar 

  41. Zhang G, Song A, Duan Y, Zheng S (2018) Microporous Mesoporous Mater 255:61. https://doi.org/10.1016/j.micromeso.2017.07.028

    Article  Google Scholar 

  42. Lee J, Ha J-H, Song I-H, Park J-W (2019) J Ceram Soc Jpn 127:35. https://doi.org/10.2109/jcersj2.18124

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Technology Innovation Program (10053611) funded by the Ministry of Trade, Industry & Energy (MI, Republic of Korea) and the Fundamental Research Program (PNK6340) in Korea Institute of Materials Science (KIMS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongman Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Ha, JH., Song, IH. et al. Facile surface modification of ceramic membranes using binary TiO2/SiO2 for achieving fouling resistance and photocatalytic degradation. J Sol-Gel Sci Technol 91, 198–207 (2019). https://doi.org/10.1007/s10971-019-04972-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-019-04972-x

Keywords

Navigation