Skip to main content
Log in

Accelerator mass spectrometry (AMS) for beryllium-7 measurements in smallest rainwater samples

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Beryllium-7, mainly measured via γ-spectrometry, is used as a (natural) radiotracer for education and science. For activities < 0.1 Bq and samples containing also longer-lived 10Be, accelerator mass spectrometry (AMS) is the method-of-choice. We demonstrate that 7Be and 10Be can be quantified at the Dresden AMS facility on the same prepared BeO. Detection limits (7Be) are ~ 0.6 mBq. Samples as small as tens of millilitres of rainwater can be chemically processed (after acidification) within a few hours without expensive and slow ion exchange. Isobar (7Li) suppression by chemistry and AMS is sufficient to guarantee for an ultrasensitive, cheap, and fast detection method for 7Be allowing high sample throughput.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tilley DR, Cheves CM, Godwin JL, Hale GM, Hofmann HM, Kelley JH, Sheu CG, Weller HR (2002) Energy levels of light nuclei A = 5, 6, 7. Nucl Phys A 708:3–163. https://doi.org/10.1016/S0375-9474(02)00597-3

    Article  Google Scholar 

  2. Korschinek G et al (2010) A new value for the half-life of 10Be by heavy-ion elastic recoil detection and liquid scintillation counting. Nucl Instrum Methods Phys Res Sect B 268(2):187–191. https://doi.org/10.1016/j.nimb.2009.09.020

    Article  CAS  Google Scholar 

  3. Raisbeck GM, Yiou F, Fruneau M, Loiseaux JM, Lieuvin M, Ravel JC (1981) Cosmogenic 10Be/7Be as a probe of atmospheric transport processes. Geophys Res Lett 8(9):1015–1018. https://doi.org/10.1029/GL008i009p01015

    Article  CAS  Google Scholar 

  4. Jordan CE, Dibb JE, Finkel RC (2003) 10Be/7Be tracer of atmospheric transport and stratosphere–troposphere exchange. J Geophys Res Atmos 108(D8):4234. https://doi.org/10.1029/2002JD002395

    Article  CAS  Google Scholar 

  5. Webber WR, Higbie PR, McCracken KG (2007) Production of the cosmogenic isotopes 3H, 7Be, 10Be, and 36Cl in the Earth’s atmosphere by solar and galactic cosmic rays. J Geophys Res 112(A10):A10106. https://doi.org/10.1029/2007JA012499

    Article  CAS  Google Scholar 

  6. Poluianov SV, Kovaltsov GA, Mishev AL, Usoskin IG (2016) Production of cosmogenic isotopes 7Be, 10Be, 14C, 22Na, and 36Cl in the atmosphere: altitudinal profiles of yield functions. J Geophys Res Atmos 121(13):8125–8136. https://doi.org/10.1002/2016JD025034

    Article  CAS  Google Scholar 

  7. Davidson CI (1989) Mechanisms of wet and dry deposition of atmospheric contaminants to snow surfaces. In: Oeschger H, Langway CC Jr. (eds) The environmental record in glaciers and ice sheets. Dahlem conference. Wiley, Chichester, pp 29–51

    Google Scholar 

  8. Yoon YY, Koh DC, Lee KY, Cho SY (2016) Seasonal variation of 7Be and 3H in Korean ambient air and rain. J Radioanal Nucl Chem 307(3):1629–1633. https://doi.org/10.1007/s10967-015-4340-x

    Article  CAS  Google Scholar 

  9. Kim KJ, Choi Y, Yoon YY (2016) Monitoring 7Be and tritium in rainwater in Daejeon, Korea and its significance. Appl Radiat Isot 109:470–473. https://doi.org/10.1016/j.apradiso.2015.11.094

    Article  CAS  PubMed  Google Scholar 

  10. Dovhyi II, Kremenchutskii DA, Proskurnin VY, Kozlovskaya ON (2017) Atmospheric depositional fluxes of cosmogenic 32P, 33P and 7Be in the Sevastopol region. J Radioanal Nucl Chem 314(3):1643–1652. https://doi.org/10.1007/s10967-017-5577-3

    Article  CAS  Google Scholar 

  11. Raisbeck GM, Yiou F (1988) Measurement of 7Be by accelerator mass spectrometry. Earth Planet Sci Lett 89(1):103–108. https://doi.org/10.1016/0012-821X(88)90035-0

    Article  CAS  Google Scholar 

  12. Graham I, Ditchburn R, Barry B (2003) Atmospheric deposition of 7Be and 10Be in New Zealand Rain (1996–98). Geochim Cosmochim Acta 67(3):361–373. https://doi.org/10.1016/S0016-7037(02)01092-X

    Article  CAS  Google Scholar 

  13. Jenniskens P, Betlem H, Betlem J, Barifaijo E, Schlüter T, Hampton C, Laubenstein M, Kunz J, Heusser G (1994) The Mbale meteorite shower. Meteoritics 29(2):246–254. https://doi.org/10.1111/j.1945-5100.1994.tb00678.x

    Article  Google Scholar 

  14. Bischoff A, Jersek M, Grau T, Mirtic B, Ott U, Kučera J, Horstmann M, Laubenstein M, Herrmann S, Řanda Z, Weber M, Heusser G (2011) Jesenice—a new meteorite fall from Slovenia. Meteorit Planet Sci 46(6):793–804. https://doi.org/10.1111/j.1945-5100.2011.01191.x

    Article  CAS  Google Scholar 

  15. Bas MC, Ortiz J, Ballesteros L, Martorell S (2016) Analysis of the influence of solar activity and atmospheric factors on 7Be air concentration by seasonal-trend decomposition. Atmos Environ 145:147–157. https://doi.org/10.1016/j.atmosenv.2016.09.027

    Article  CAS  Google Scholar 

  16. Rajacic MM, Todorovic DJ, Krneta Nikolic JD, Puzovic JM (2017) The impact of the solar magnetic field on 7Be activity concentration in aerosols. Appl Radiat Isot 125:27–29. https://doi.org/10.1016/j.apradiso.2017.04.008

    Article  CAS  PubMed  Google Scholar 

  17. Akhmadaliev S, Heller R, Hanf D, Rugel G, Merchel S (2013) The new 6 MV AMS-facility DREAMS at Dresden. Nucl Instrum Methods Phys Res Sect B 294:5–10. https://doi.org/10.1016/j.nimb.2012.01.053

    Article  CAS  Google Scholar 

  18. Zipf L, Merchel S, Bohleber P, Rugel G, Scharf A (2016) Exploring ice core drilling chips from a cold Alpine glacier for cosmogenic radionuclide (10Be) analysis. Res Phys 6:78–79. https://doi.org/10.1016/j.rinp.2016.01.002

    Article  Google Scholar 

  19. Merchel S, Herpers U (1999) An update on radiochemical separation techniques for the determination of long-lived radionuclides via accelerator mass spectrometry. Radiochim Acta 84(4):215–219. https://doi.org/10.1524/ract.1999.84.4.215

    Article  CAS  Google Scholar 

  20. Brown ET, Edmond JM, Raisbeck GM, Yiou F, Kurz MD, Brook EJ (1991) Examination of surface exposure ages of Antarctic moraines using in situ produced 10Be and 26Al. Geochim Cosmochim Acta 55(8):2269–2283. https://doi.org/10.1016/0016-7037(91)90103-C

    Article  CAS  Google Scholar 

  21. Landis JD, Renshaw CE, Kaste JM (2012) Measurement of 7Be in soils and sediments by gamma spectroscopy. Chem Geol 291:175–185. https://doi.org/10.1016/j.chemgeo.2011.10.007

    Article  CAS  Google Scholar 

  22. Merchel S, Qaim SM (1997) Excitation functions of (3He,7Be)-reactions on light mass target elements. Radiochim Acta 77:137–142. https://doi.org/10.1524/ract.1997.77.3.137

    Article  CAS  Google Scholar 

  23. Nagai H, Tada W, Matsumura H, Aze T, Noguchi M, Matsuzaki H (2004) Measurement of 7Be at MALT. Nucl Instrum Methods Phys Res Sect B 223–224:237–241. https://doi.org/10.1016/j.nimb.2004.04.048

    Article  CAS  Google Scholar 

  24. Smith AM, Mokhber-Shahin L, Simon KJ (2013) A new capability for ANTARES: 7Be by AMS for ice samples. Nucl Instrum Methods Phys Res Sect B 294:59–66. https://doi.org/10.1016/j.nimb.2012.08.055

    Article  CAS  Google Scholar 

  25. Zhang Li FuYC (2017) Preliminary study of 10Be/7Be in rainwater from Xi’an by accelerator mass spectrometry. Chin Phys C 41(1):018201. https://doi.org/10.1088/1674-1137/41/1/018201

    Article  CAS  Google Scholar 

  26. Hidy AJ, Brown TA, Tumey SJ, Zimmerman SRH, Gharibyan N, Frank M, Bench G (2018) A new 7Be AMS capability established at CAMS and the potential for large datasets. Nucl Instrum Methods Phys Res Sect B 414:126–132. https://doi.org/10.1016/j.nimb.2017.11.017

    Article  CAS  Google Scholar 

  27. Zhao X-L, Nadeau M-J, Garwan MA, Kilius LR, Litherland AE (1990) A new method for the separation of the isobars 7Be–7Li. Nucl Instrum Methods Phys Res Sect B 52(3–4):416–420. https://doi.org/10.1016/0168-583X(90)90448-4

    Article  Google Scholar 

  28. Querfeld R, Merchel S, Steinhauser G (2017) Low-cost production of a beryllium-7 tracer from rainwater and purification: preliminary results. J Radioanal Nucl Chem 314(1):521–527. https://doi.org/10.1007/s10967-017-5433-5

    Article  CAS  Google Scholar 

  29. Rugel G, Pavetich S, Akhmadaliev S, Enamorado Baez SM, Scharf A, Ziegenrücker R, Merchel S (2016) The first four years of the AMS-facility DREAMS: status and developments for more accurate radionuclide data. Nucl Instrum Methods Phys Res Sect B 370:94–100. https://doi.org/10.1016/j.nimb.2016.01.012

    Article  CAS  Google Scholar 

  30. Merchel S, Bremser W, Bourlès DL, Czeslik U, Erzinger J, Kummer N-A, Leanni L, Merkel B, Recknagel S, Schaefer U (2013) Accuracy of 9Be-data and its influence on 10Be cosmogenic nuclide data. J Radioanal Nucl Chem 298(3):1871–1878. https://doi.org/10.1007/s10967-013-2746-x

    Article  CAS  Google Scholar 

  31. Rajta I, Vajda I, Gyürky G, Csedreki L, Kiss ÁZ, Biri S, van Oosterhout HAP, Podaru NC, Mous DJW (2018) Accelerator characterization of the new ion beam facility at MTA Atomki in Debrecen, Hungary. Nucl Instrum Methods Phys Res Sect A 880:125–130. https://doi.org/10.1016/j.nima.2017.10.073

    Article  CAS  Google Scholar 

  32. Gyürky G, Ornelas A, Fülöp Z, Halász Z, Kiss GG, Szücs T, Huszánk R, Hornyák I, Rajta I, Vajda I (2017) Cross section measurement of the astrophysically important 17O(p, γ)18F reaction in a wide energy range. Phys Rev C 95:035805. https://doi.org/10.1103/PhysRevC.95.035805

    Article  Google Scholar 

  33. Parker PD (1966) Be7(p, γ)B8 reaction. Phys Rev 150(3):851–856. https://doi.org/10.1103/PhysRev.150.851

    Article  CAS  Google Scholar 

  34. Pavetich S, Akhmadaliev S, Arnold M, Aumaître G, Bourlès D, Buchriegler J, Golser R, Keddadouche K, Martschini M, Merchel S, Rugel G, Steier P (2014) Interlaboratory study of the ion source memory effect in 36Cl accelerator mass spectrometry. Nucl Instrum Methods Phys Res Sect B 329:22–29. https://doi.org/10.1016/j.nimb.2014.02.130

    Article  CAS  Google Scholar 

  35. Erhard M (2009) Photoaktivierung des p-Kerns 92Mo am Bremsstrahlungsmessplatz von ELBE, Dissertation, TU Dresden. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-61919. Accessed 1 Oct 2018

  36. Klein M, Mous D, Gottdang A (2004) Fast and accurate sequential injection AMS with gated Faraday cup current measurement. Radiocarbon 46(1):77–82. https://doi.org/10.1017/S0033822200039370

    Article  CAS  Google Scholar 

  37. Chamizo E, Enamorado SM, García-León M, Suter M, Wacker L (2008) Plutonium measurements on the 1 MV AMS system at the centro nacional de aceleradores (CNA). Nucl Instrum Methods Phys Res Sect B 266(22):4948–4954. https://doi.org/10.1016/j.nimb.2008.08.001

    Article  CAS  Google Scholar 

  38. Sayer RO (1977) Semi-empirical formulas for heavy-ion stripping data. Rev Phys Appl 12(10):1543–1546. https://doi.org/10.1051/rphysap:0197700120100154300

    Article  CAS  Google Scholar 

  39. Nishiizumi K, Imamura M, Caffee MW, Southon JR, Finkel RC, McAninch J (2007) Absolute calibration of 10Be AMS standards. Nucl Instrum Methods Phys Res Sect B 258(2):403–413. https://doi.org/10.1016/j.nimb.2007.01.297

    Article  CAS  Google Scholar 

  40. Zanis P et al (2003) An estimate of the impact of stratosphere-to-troposphere transport (STT) on the lower free tropospheric ozone over the Alps using 10Be and 7Be measurements. J Geophys Res 108(D12):8520. https://doi.org/10.1029/2002JD002604

    Article  CAS  Google Scholar 

  41. Yamagata T, Sugihara S, Morinaga I, Matsuzaki H, Nagai H (2010) Short term variations of 7Be, 10Be concentrations in atmospheric boundary layer. Nucl Instrum Methods Phys Res Sect B 268(7–8):1135–1138. https://doi.org/10.1016/j.nimb.2009.10.117

    Article  CAS  Google Scholar 

  42. Laubenstein M et al (2004) Underground measurements of radioactivity. Appl Radiat Isot 61:167–172. https://doi.org/10.1016/j.apradiso.2004.03.039

    Article  CAS  PubMed  Google Scholar 

  43. Bemmerer D et al (2017) Progress of the Felsenkeller shallow-underground accelerator for nuclear astrophysics. JPS Conf Proc 14:021106. https://doi.org/10.7566/JPSCP.14.021106

    Article  Google Scholar 

  44. Gyürky G et al (LUNA Collaboration) (2007) 3He(α,γ)7Be cross section at low energies. Phys Rev C 75:035805. https://doi.org/10.1103/physrevc.75.035805

  45. Kusmierczyk-Michulec J, Gheddou A, Nikkinen M (2015) Influence of precipitation on 7Be concentrations in air as measured by CTBTO global monitoring system. J Environ Radioact 144:140–151. https://doi.org/10.1016/j.jenvrad.2015.03.014

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Gyürky György (Institute for Nuclear Research, Hungarian Academy of Sciences, Debrecen, Hungary) for production of the 7Be calibration materials. Parts of this research were carried out at the Ion Beam Centre (IBC) at the Helmholtz-Zentrum Dresden-Rossendorf e. V., a member of the Helmholtz Association. We would like to thank Dominik Güttler, René Ziegenrücker and the DREAMS operator team for supporting the AMS-measurements. Discussion with Andrew Smith (ANSTO) is highly appreciated. Funding from BMBF (05K16MG1) and DAAD-RISE Professional (HZDR-PH-456) allowed Collin Tiessen to stay two times at HZDR to work on this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silke Merchel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiessen, C., Bemmerer, D., Rugel, G. et al. Accelerator mass spectrometry (AMS) for beryllium-7 measurements in smallest rainwater samples. J Radioanal Nucl Chem 319, 965–973 (2019). https://doi.org/10.1007/s10967-018-6371-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6371-6

Keywords

Navigation